

Figure 8-19 Link Speed Plot (mph) – AM Peak

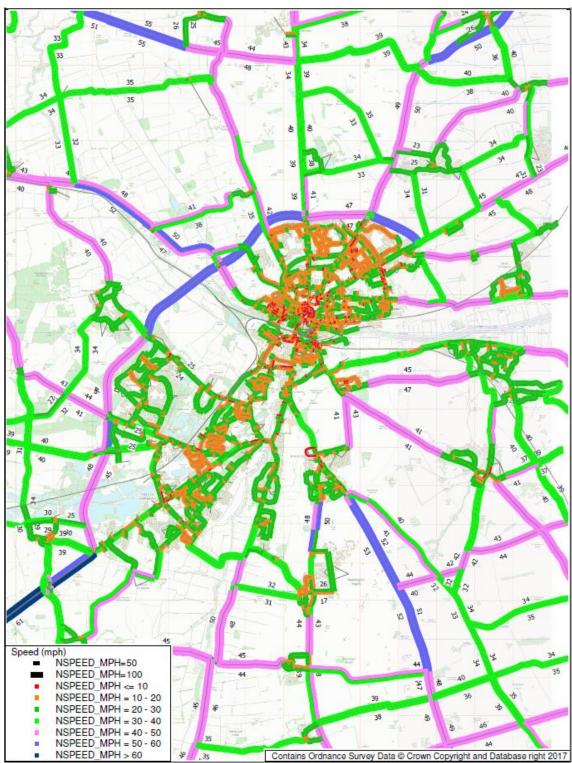
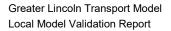
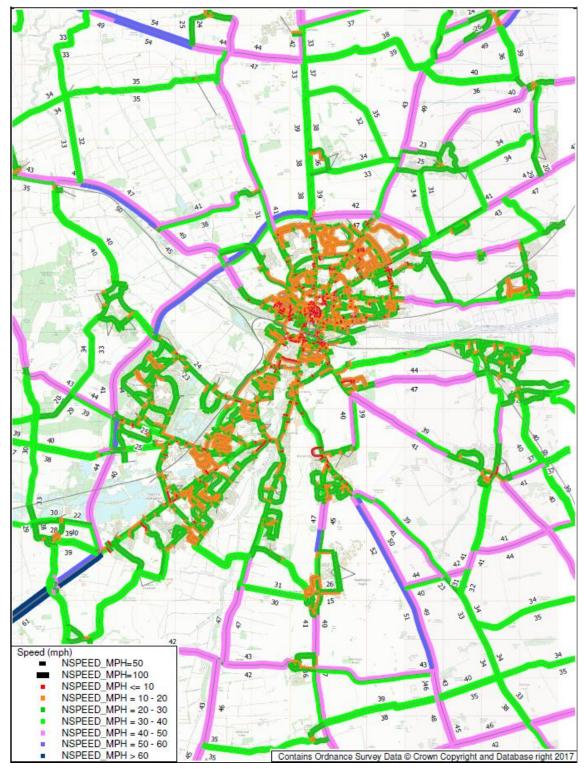




Figure 8-20 Link Speed Plot (mph) – Inter-Peak

9 Summary and Conclusions

9.1 Summary of Development

The Greater Lincoln Transport Model was developed for a base year of 2016 in SATURN software, with the model assisted by a comprehensive data collection program.

An observed prior matrix was derived from mobile phone origin-destination data which provided a fully observed matrix of movements sampled over a month long period for all modes within the mobile phone data collection study area. The data was processed by Citilogik through cell tracking of Vodafone mobile devices and developed into travel demand matrices using tested processes and algorithms.

The data was verified initially by Citilogik and then subsequently by WSP as part of the matrix development to establish strengths and limitations against standard modelling metrics, including trip rates and trip length profiles. A gravity model was used to form a synthetic matrix based on NTEM Version 7.2 trip ends to infill anonymised cells, a consequence of data protection for low cell totals, and short distance trips which were not fully represented within the mobile phone data. Matrix estimation was then carried out to produce a final assignment.

9.2 Summary of Standards

The base year model validation was developed closely to the guidance in TAG Unit M3.1*Highway Assignment Modelling*. Satisfactory convergence has been achieved for all three assignment periods.

Screenline flows are closely reflected across all three periods. For the AM peak and inter-peak, 100% of screenlines achieve a GEH of four or lower and 94% of screenlines likewise in the PM peak.

Link and turn validation is shown to be consistently high in terms of both flow and GEH reporting criteria across all three periods. Combining the calibration and validation counts into a single dataset, 96% of counts in the AM peak and inter-peak periods and 94% of counts in the PM peak achieve a GEH of five or lower, above the minimum threshold of 85%.

The journey time validation across all three periods exceeds the required standard of 85% of modelled journey time routes being within 15% or 1 minute of the observed data. Upwards of 97% of routes achieve the criteria in the AM peak and inter peak models.

9.3 Summary of Fitness for Purpose

The updated 2016 Greater Lincoln Transport Model is fit for purpose. The base year models form a suitable platform on which to develop future year forecasts and for application in variable demand modelling.

Appendices

Appendix A – Traffic Count Database

Attached.

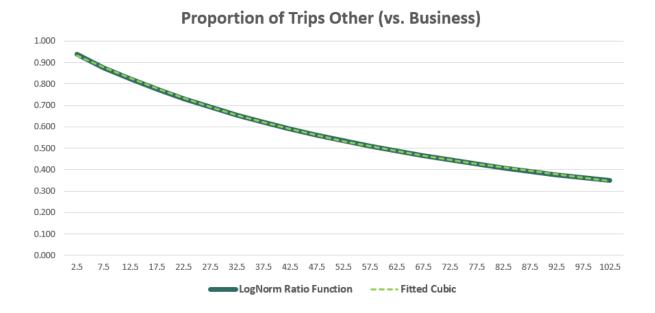
Appendix B – Speed Flow Curves

Index	Description	S 0	S 2	Capacity	Ν	HGV
Motorv						
1	Motorway D4 Carriageways (70mph)	112	82	9320	2.78	96
2	Motorway D4 Carriageways (70mph)	111	81	9320	2.78	96
3	Motorway D4 Carriageways (70mph)	110	80	9320	2.78	96
4	Motorway D3 Carriageways (70mph)	111	81	6990	2.78	96
5	Motorway D3 Carriageways (70mph)	110	80	6990	2.78	96
6	Motorway D3 Carriageways (70mph)	109	78	6990	2.79	96
7	Motorway D2 Carriageways (70mph)	105	74	4660	2.88	96
8	Motorway D2 Carriageways (70mph)	104	73	4660	2.88	96
9	Motorway D2 Carriageways (70mph)	102	71	4660	2.89	96
10	Motorway D2 Carriageways (70mph)	101	70	4660	2.89	96
Dual C	arriageway: Rural	11			1	
11	All-Purpose D3 Carriageways (70mph)	109	82	6300	2.70	96
12	All-Purpose D3 Carriageways (70mph)	108	81	6300	2.70	96
13	All-Purpose D2 Carriageways (70mph)	105	78	4200	2.71	96
14	All-Purpose D2 Carriageways (70mph)	101	74	4200	2.79	96
15	All-Purpose D3 Carriageways (60mph)	98	72	6300	2.71	96
16	All-Purpose D3 Carriageways (60mph)	95	71	6300	2.71	
17	All-Purpose D2 Carriageways (60mph)	96	70	4200	2.71	
18	All-Purpose D2 Carriageways (60mph)	93	69	4200	2.79	
19	All-Purpose D3 Carriageways (50mph)	80	56	5580	2.82	
20	All-Purpose D3 Carriageways (50mph)	79	55	5580	2.83	
21	All-Purpose D2 Carriageways (50mph)	80	56	3720	2.82	
22	All-Purpose D2 Carriageways (50mph)	78	55	3720	2.83	
Dual C	arriageway: Suburban/Urban			•		
31	D3 Carriageways (40mph)	64	35	4710	2.42	
32	D3 Carriageways (40mph)	64	35	4380	2.10	
33	D3 Carriageways (40mph)	64	35	4110	1.79	
34	D2 Carriageways (40mph)	64	35	3280	2.79	
35	D2 Carriageways (40mph)	64	35	3100	2.35	
36	D2 Carriageways (40mph)	64	35	2900	2.01	
37	D3 Carriageways (30mph)	48	25	4290	2.61	
38	D3 Carriageways (30mph)	45	25	4020	2.09	
39	D3 Carriageways (30mph)	43	25	3720	1.59	
40	D2 Carriageways (30mph)	48	25	2760	2.37	
41	D2 Carriageways (30mph)	45	25	2580	1.84	
42	D2 Carriageways (30mph)	43	25	2380	1.41	
Single	Carriageway: Rural					
51	Single Carriageways: SW2-9.0m A Road 60mph	92	60	1720	2.25	
52	Single Carriageways: S2-7.3m A Road 60mph	90	59	1390	2.08	
53	Single Carriageways: S2-7.0m A Road 60mph	87	57	1330	2.07	
54	Single Carriageways: S2-6.6m A Road 60mph	83	56	1240	2.06	
55	Single Carriageways: S2-6.3m B Road 60mph	81	54	1170	2.02	
56	Single Carriageways: S2-6.0m B Road 60mph	76	54	1090	2.00	
57	Single Carriageways: S2-5.6m B Road 60mph	73	53	970	1.94	
58	Single Carriageways: S2-5.2m Other Road	76	54	830	1.88	
50	60mph	10	54	000	1.00	

59	Single Carriageways: S2-5.0m Other Road 60mph	66	51	750	1.88	
60	Single Carriageways: S2-4.6m Other Road 60mph	57	40	570	1.84	
61	Single Carriageways: S2-4.4m Other Road 60mph	54	35	440	1.58	
62	Single Carriageways: S2-7.3m A Road 50mph	80	50	1590	2.25	
63	Single Carriageways: S2-7.3m A Road 50mph	80	50	1390	2.08	
64	Single Carriageways: S2-7.0m A Road 50mph	76	47	1330	2.07	
65	Single Carriageways: S2-6.6m A Road 50mph	73	46	1240	2.06	
66	Single Carriageways: S2-6.3m B Road 50mph	70	45	1170	2.02	
67	Single Carriageways: S2-6.0m B Road 50mph	66	45	1090	2.00	
68	Single Carriageways: S2-5.6m B Road 50mph	63	45	970	1.94	
69	Single Carriageways: S2-5.2m Other Road 50mph	61	40	830	1.88	
70	Single Carriageways: S2-5.0m Other Road 50mph	56	35	750	1.88	
Single	Carriageway: Suburban				1	
71	Suburban Roads - Single 40mph (Good)	63	25	1380	2.51	
72	Suburban Roads - Single 40mph (Good)	60	25	1240	2.16	
73	Suburban Roads - Single 40mph (Average)	57	25	1200	1.94	
74	Suburban Roads - Single 40mph (Average)	54	25	1060	1.72	
75	Suburban Roads - Single 40mph (Poor)	51	25	980	1.53	
76	Suburban Roads - Single 30mph (Good)	48	25	1300	3.91	
77	Suburban Roads - Single 30mph (Good)	46	25	1210	2.61	
78	Suburban Roads - Single 30mph (Average)	44	25	1170	2.40	
79	Suburban Roads - Single 30mph (Average)	42	25	950	1.37	
80	Suburban Roads - Single 30mph (Poor)	38	25	860	1.32	
Single	Carrigeway: Urban	-,,				
81	Urban Non-central 50% development	48	25	930	1.97	
82	Urban Non-central 80% development	48	25	930	1.65	
83	Urban Non central 90% development	47	25	840	1.52	
84	Urban Central INT = 2	38	15	910	1.87	
85	Urban Central INT = 4.5	33	15	710	1.72	
86	Urban Central INT = 9	30	15	560	1.61	
87	Urban Central INT = 15	20	10	560	1.61	
88	Special cobble street	10	5	250	1.61	
Small ⁻	Town					
91	Small Town 10% development	64	30	1400	2.95	
92	Small Town 25% development	60	30	1370	2.96	
93	Small Town 40% development	58	30	1300	2.94	
94	Small Town 60% development	48	25	1370	3.91	
95	Small Town 80% development	48	25	1240	3.35	
96	Small Town 95% development	45	25	1120	2.81	
97	Small Town 95% development - 20mph	32	15	950	1.72	

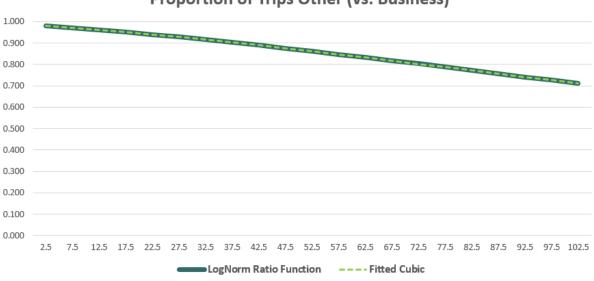
Appendix C – Verification of MPOD Data

Technical note attached.

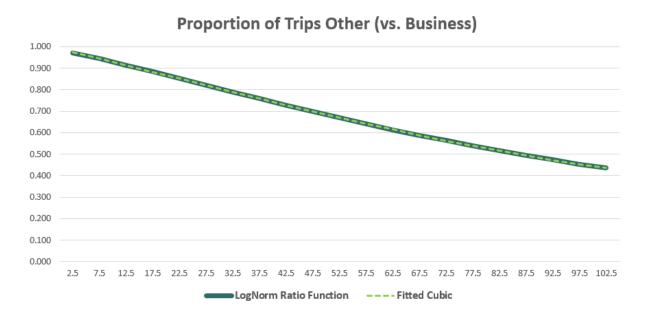

Appendix D – MPOD Data Purpose Split

Chapter 6 of the main report described the methodology for fitting continuous functions – based on fitting log normal distributions to observed NTS trip length distributions – to derive purpose splits varying by distance.

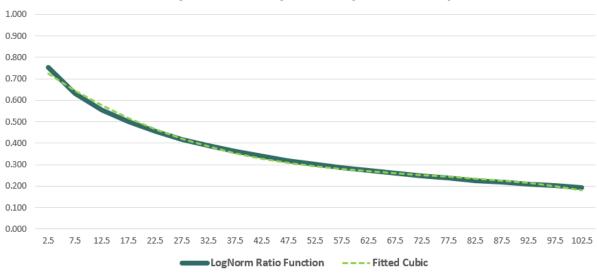
The table below lists the parameters which defined each of the fitted curves – either a cubic (degree 3) or quartic (degree 4) polynomial – followed by plots for each of these in turn.


Purpose	Period	x^0	x^1	x^2	x^3	x^4
	AM	0.9628429	-0.0121081	0.0000906	-0.0000003	
Home Based Other (vs. Business)	IP	0.9839508	-0.0016090	-0.0000174	0.0000001	
	PM	0.9891655	-0.0060670	-0.0000074	0.0000001	
	AM	0.7668500	-0.0179374	0.0002224	-0.0000010	
NHB Other (vs. Business)	IP	0.8699483	-0.0104435	0.0001091	-0.0000005	
	PM	0.8747958	-0.0052449	0.0000531	-0.0000002	
	AM	0.6294478	-0.0473695	0.0012988	-0.0000148	0.0000001
Home Based Education (vs. Commute)	IP	0.7108725	-0.0444450	0.0010998	-0.0000118	0.0000000
	PM	0.3039633	-0.0189304	0.0005098	-0.0000058	0.0000000
	AM	0.4342107	-0.0300090	0.0008039	-0.0000091	0.0000000
NHB Education (vs. Commute)	IP	0.5976496	-0.0093195	0.0000780	-0.0000003	
	PM	0.7458270	-0.0041369	0.0000591	-0.0000003	

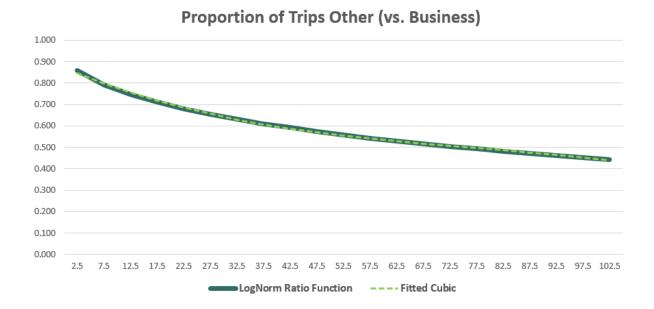
AM Home Based Other (vs. Business)



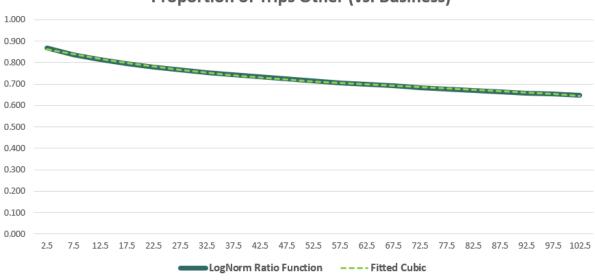
IP Home Based Other (vs. Business)


Proportion of Trips Other (vs. Business)

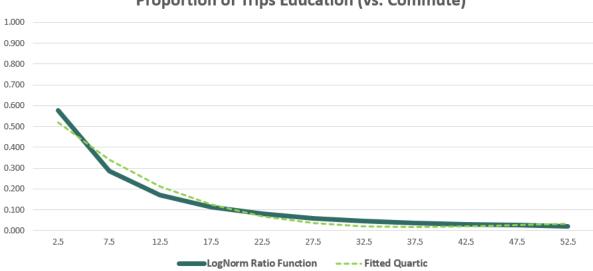
PM Home Based Other (vs. Business)



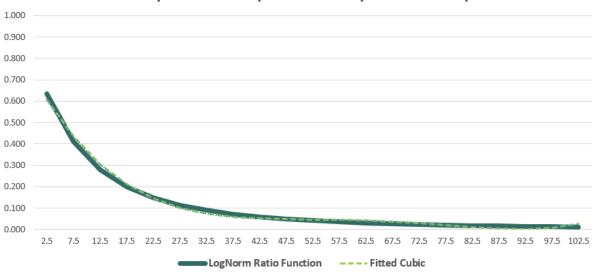
AM Non-Home Based Other (vs. Business)


Proportion of Trips Other (vs. Business)

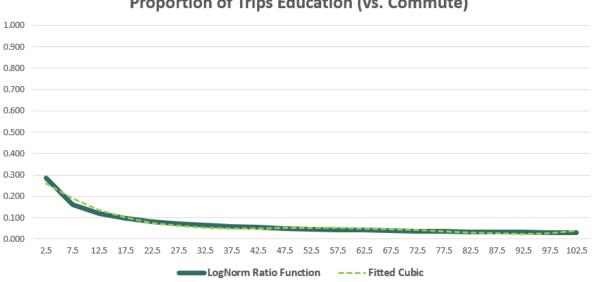
IP Non-Home Based Other (vs. Business)



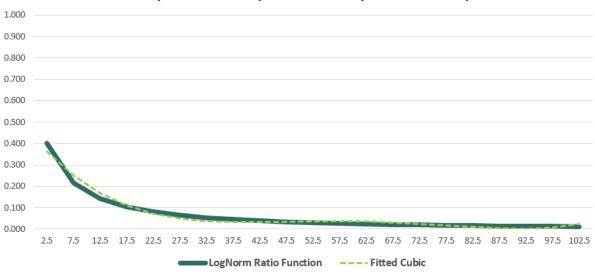
PM Non-Home Based Other (vs. Business)


Proportion of Trips Other (vs. Business)

AM Home Based Education (vs. Commute)

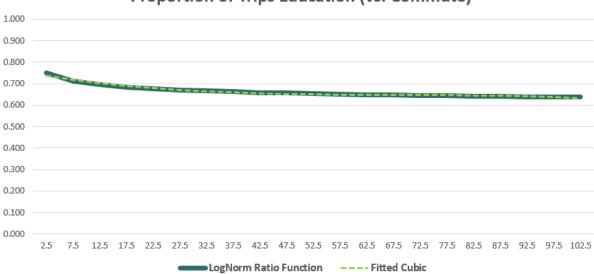


IP Home Based Education (vs. Commute)


Proportion of Trips Education (vs. Commute)

PM Home Based Education (vs. Commute)

AM Non-Home Based Education (vs. Commute)


Proportion of Trips Education (vs. Commute)

IP Non-Home Based Education (vs. Commute)

PM Non-Home Based Education (vs. Commute)

Appendix E – Network Acceptance Checks

Technical note attached.

Appendix F – Effects of Matrix Estimation

Reporting attached.

Appendix G – Screenline Validation Performance

Tabulations attached.

Appendix H – Link Flow Validation Performance

Tabulations and images attached.

Appendix I – Journey Time Validation Performance

Tabulations and images attached.

Appendix J – GLHAM Model Outputs

Model flow and model speed outputs attached.

CountID	RdName	RdClass	Туре	Dir	Cal/Val		AM Peak			Inter Peak			PM Peak	
JTC 1_Nov16	A1434 Newark Road E	A	MCC_Turn	WB	Cal	Car 70	LGV 9	HGV 2	Car 29	LGV 5	HGV 3	Car 31		HGV 0
JTC 1_Nov16 JTC 1_Nov16	A1434 Newark Road E Boundary Lane	A U	MCC_Turn MCC_Turn	WB NB	Cal Cal	567 242	73 35	48 13	87	58 18	39 12	137	36 19	
JTC 1_Nov16 JTC 1_Nov16	Boundary Lane A1434 Newark Road W	U A	MCC_Turn MCC_Turn	NB EB	Cal Cal	12 308	1 64	2 54		5 58	2		3 87	
JTC 1_Nov16 JTC 2_Nov16	A1434 Newark Road W Station Road	A U	MCC_Turn MCC_Turn	EB SB	Cal Cal	121 52	23 10	8 5	87 104	18 12	12 5	59	38 8	2
JTC 2_Nov16 JTC 2_Nov16	Station Road Station Road	UU	MCC_Turn MCC_Turn	SB SB	Cal Cal	191 44	28 11	14	42	20 8	8	258 85	20 8	1
JTC 2_Nov16 JTC 2_Nov16	A1434 Newark Road E A1434 Newark Road E	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	116 271	6 47	4		6 40	7 31	130 421	6 30	20
JTC 2_Nov16 JTC 2_Nov16	A1434 Newark Road E Moor Lane	A U	MCC_Turn MCC_Turn	WB NB	Cal Cal	105 79	12 13	5	72 83	7 10	5 4	41	10 2	
JTC 2_Nov16 JTC 2_Nov16	Moor Lane Moor Lane	UU	MCC_Turn MCC_Turn	NB NB	Cal Cal	357 99	36 13	12	112 91	19 7	7	162 96	16 9	3
JTC 2_Nov16 JTC 2_Nov16	A1434 Newark Road W A1434 Newark Road W	A	MCC_Turn MCC_Turn	EB EB	Cal Cal	61 363	11 47	10 31		8 47	6 28	52 455	8 51	5 10
JTC 2_Nov16 JTC 3_Nov16	A1434 Newark Road W Lincoln Road	A U	MCC_Turn MCC_Turn	EB SB	Cal Cal	99 32	5 7	8	78 13	10 2	3	96 10	4	2
JTC 3_Nov16 JTC 3_Nov16	Lincoln Road Chapel Lane	U U	MCC_Turn MCC_Turn	SB WB	Cal Cal	241 295	24 27	8 12		40 3	14 0	13	46 0	2
JTC 3_Nov16 JTC 3_Nov16	Chapel Lane Mill Lane	UU	MCC_Turn MCC_Turn	WB NB	Cal Cal	75 162	8 19	1		3 10	2		3	0
JTC 3_Nov16 JTC 3_Nov16	Mill Lane Moor Lane	U U	MCC_Turn MCC_Turn	NB EB	Cal Cal	366 213	14 29	9 23		16 26	10 11	238	30 24	
JTC 3_Nov16 JTC 3_Nov16	Moor Lane Lincoln Road	U U	MCC_Turn MCC_Link	EB NB	Cal Cal	35 511	5 26	0 14		8 42	6 21		8 54	1 14
JTC 3_Nov16 JTC 3_Nov16	Chapel Lane Mill Lane	U U	MCC_Link MCC_Link	EB SB	Cal Cal	176 176	33 21	19 6	283	6 29	13	31 436	5 36	
JTC 3_Nov16 JTC 4_Nov16	Moor Lane Brant Road N	UUU	MCC_Link MCC_Turn	WB SB	Cal Cal	557 92	54 14	16 3	114	31 15	13 7	385 195	22 13	4
JTC 4_Nov16 JTC 4_Nov16	Brant Road N Brant Road S	UU	MCC_Turn MCC_Turn	SB NB	Cal	311 155	35	15	29	10	4	187 37	14	1
JTC 4_Nov16 JTC 4_Nov16	Brant Road S Meadow Lane	UU	MCC_Turn MCC_Turn	NB EB	Cal Cal	106 259	21 30	3	125	24	9	364 244	70 29	3
JTC 4_Nov16 JTC 5_Nov16	Meadow Lane Kingsley Road	UUU	MCC_Turn MCC_Turn	EB SB	Cal Cal	82 98	28	10	86	7	2	48	8	0
JTC 5_Nov16 JTC 5_Nov16	Kingsley Road Whisby Road E	UU	MCC_Turn MCC_Turn	SB WB	Cal Cal	60 44	30 5	12	13	13	5	230	2	4
JTC 5_Nov16 JTC 5_Nov16	Whisby Road E Teal Park Road	UUU	MCC_Turn MCC_Turn	NB NB	Cal Cal	324 10	75	36	25	58 5	35	543 37	57	13
JTC 5_Nov16 JTC 5_Nov16	Teal Park Road Whisby Road W	UU	MCC_Turn MCC_Turn	NB EB	Cal	3 249	6 15	4	23 87	5	5	30	10	
JTC 5_Nov16 JTC 6_Nov16	Whisby Road W B1190 Doddington Rd E	U B B	MCC_Turn MCC_Turn MCC_Turn	EB WB WB	Cal Val	501 152	55 15	28	65	39 6	34 32	64	35	0
JTC 6_Nov16 JTC 6_Nov16	B1190 Doddington Rd E Sadler Road Sadler Road	UU	MCC_Turn MCC_Turn MCC_Turn	NB NB	Val Val	439 63 16	86 38	32	114 58	52 14 8	5	584 297 74	47 17 8	2
JTC 6_Nov16 JTC 6_Nov16 JTC 6_Nov16	B1190 Doddington Rd W B190 Doddington Rd W	B	MCC_Turn MCC_Turn	EB	Val Val Val	511 290	6 46 20	28			28		73	10
JTC 7_Nov16 JTC 7 Nov16	Whisby Road E Whisby Road E	U	MCC_Turn MCC_Turn	WB WB	Cal	304 216	45	22 16	233	40	20 14		30	3
JTC 7_Nov16 JTC 7 Nov16	Whisby Road E Station Road	Ŭ	MCC_Turn MCC Turn	WB NB	Cal	0	0	0	1	0	0	1	1	0
JTC 7_Nov16 JTC 7 Nov16	Station Road Station Road	U U	MCC_Turn MCC_Turn	NB NB	Cal	223	38	20		29	16		14	
JTC 7_Nov16 JTC 7_Nov16	Whisby Road W Whisby Road W	Ŭ	MCC_Turn MCC Turn	EB	Cal	82 309	29 47	14		21 32	9	109 375	13 48	
JTC 8_Nov16 JTC 8_Nov16	A1534 Newark Road N A1534 Newark Road N	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	323 7	61 2	19 0		44	29 1		50 0	
JTC 8_Nov16 JTC 8_Nov16	A1534 Newark Road S A1534 Newark Road S	A A	MCC_Turn MCC_Turn	EB EB	Cal Cal	411 301	45 55	14 25		25 39	16 23		31 58	8 11
JTC 8_Nov16 JTC 8_Nov16	B1003 Tritton Road B1003 Tritton Road	B	MCC_Turn MCC_Turn	SB SB	Cal Cal	1 107	1 17	0 12	15 339	1 24	0 11	16 425	0 35	0 10
JTC 9_Nov16 JTC 9_Nov16	A1434 Newark Road N A1434 Newark Road N	A	MCC_Turn MCC_Turn	SB SB	Val Val	263 251	46 45	28 13		42	27 25	417 206	35 42	12 14
JTC 9_Nov16 JTC 9_Nov16	A1434 Newark Road S A1434 Newark Road S	A	MCC_Turn MCC_Turn	NB NB	Val Val	47 310	1 37	0 25		2 38	1 21		22 21	1
JTC 9_Nov16 JTC 9_Nov16	B1190 Doddington Road B1190 Doddington Road	B	MCC_Turn MCC_Turn	EB EB	Val Val	95 37	29 1	19 0	12	22 1	15 0	13	17 3	5 0
JTC 10_Nov16 JTC 10_Nov16	Boultham Park Road Boultham Park Road	UU	MCC_Turn MCC_Turn	SB SB	Cal Cal	50 98	20 16	1	138 133	15 12	1	210 201	26 35	
JTC 10_Nov16 JTC 10_Nov16	Boultham Park Road Boultham Park Road	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	45	7		4	8	7	101 10	1	
JTC 10_Nov16 JTC 10_Nov16	Rookery Lane Rookery Lane	U	MCC_Turn MCC_Turn	WB WB	Cal	8	3 21	0	109	17	0	21 86	19	
JTC 10_Nov16 JTC 10_Nov16	Rookery Lane Rookery Lane	UU	MCC_Turn MCC_Turn	WB WB	Cal Cal	230	29 0	0	167 2	20	0	164 0	0	0
JTC 10_Nov16 JTC 10_Nov16 JTC 10_Nov16	Moorland Avenue Moorland Avenue	U U U	MCC_Turn MCC_Turn MCC_Turn	NB NB NB	Cal Cal	11 146	3 21	0	23 117 25	11	6	20 136 21	5	7
JTC 10_Nov16 JTC 10_Nov16	Moorland Avenue Moorland Avenue Skellingthorpe Road	UU	MCC_Turn MCC_Turn	NB EB	Cal Cal Cal	6 0 61	0	0	23	1	0	4	3 0 7	0
JTC 10_Nov16 JTC 10_Nov16	Skellingthorpe Road Skellingthorpe Road	U	MCC_Turn MCC_Turn	EB	Cal	64	21	6		15	8	139	21 5	2
JTC 10_Nov16 JTC 11_Nov16	Skellingthorpe Road Rookery Lane	U	MCC_Turn MCC_Turn	EB	Cal	0	0	0			0	0		0
JTC 11_Nov16 JTC 11 Nov16	Rookery Lane A1434 Newark Road E	U A	MCC_Turn MCC_Turn	SB WB	Cal	112	9	2	98	12	3	93 915	8	2 24
JTC 11_Nov16 JTC 11 Nov16	A1434 Newark Road E Hykeham Road	A U	MCC_Turn MCC Turn	WB NB	Cal	256 13	33	5	207 24	29	5	234	39	4
JTC 11_Nov16 JTC 11_Nov16	Hykeham Road A1434 Newark Road W	Ŭ	MCC_Turn MCC Turn	NB EB	Cal	279 350	31 67	9	229	26 57	16 29	244	24 40	11
JTC 11_Nov16 JTC 11_Nov16	A1434 Newark Road W Rookery Lane	A U	MCC_Turn MCC_Link	EB NB	Cal Cal	30 370	4 50	1	25	2 41	1	28 295	0 46	0
JTC 11_Nov16 JTC 11_Nov16	A1434 Newark Road E Hykeham Road	A U	MCC_Link MCC_Link	EB SB	Cal Cal	646 278	96 24	60 16		97 28	47 15		85 32	
JTC 11_Nov16 JTC 12_Nov16	A1434 Newark Road W A1434 Newark Road E	A A	MCC_Link MCC_Turn	WB WB	Cal Val	577 138	98 22	42		91 21	47	627 263	87 31	17 8
JTC 12_Nov16 JTC 12_Nov16	A1434 Newark Road E Brant Road	A U	MCC_Turn MCC_Turn	WB NB	Val Val	568 391	100 43	48 12	544 320	87 44	50 13	695 468	73 73	19 11
JTC 12_Nov16 JTC 12_Nov16	Brant Road A1434 Newark Road W	UA	MCC_Turn MCC_Turn	NB EB	Val Val	277 499	19 62	5 50		22 68	11 37	504	13 56	20
JTC 12_Nov16 JTC 13_Nov16	A1434 Newark Road W A15 London Road N	A	MCC_Turn MCC_Turn	EB SB	Val Cal	161 25	31 8	10	48	29 4	11	131	37	1
JTC 13_Nov16 JTC 13_Nov16	A15 London Road N A15 London Road N	A	MCC_Turn MCC_Turn	SB SB	Cal Cal	259 25	46	27	5	34 0	23 0	4	21 0	0
JTC 13_Nov16 JTC 13_Nov16	B1131 Canwick Avenue B1131 Canwick Avenue	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	453 29	58 1	36	4	46	30 0	1	31 0	0
JTC 13_Nov16 JTC 13_Nov16	B1131 Canwick Avenue A15 London Road S	B A	MCC_Turn MCC_Turn	WB NB	Cal Cal	96 51	2	2	37	5	2		2	0
JTC 13_Nov16 JTC 13_Nov16	A15 London Road S A15 London Road S	A	MCC_Turn MCC_Turn	NB NB	Cal Cal	443 309	41	24	265	43	30 22	346 424	39 31	
JTC 14_Nov16 JTC 14_Nov16	A15 London Road A15 London Road A16 Cloreford Road	A	MCC_Turn MCC_Turn	SB SB	Val Val	330 373	74	42	291	35 34	38		27 32	16 7
JTC 14_Nov16 JTC 14_Nov16	A15 Sleaford Road A15 Sleaford Road	A	MCC_Turn MCC_Turn	NB NB	Val Val	11 368	3 42	33	27 274	5 41	2 42	43 322		0 15

JTC 14 Nov16	Grantham Road	U	MCC Turn	NEB	Val	469	31	16	277	35	12	449	47	8
JTC 14_Nov16 JTC 15_Nov16	Grantham Road A15 Sleaford Road N	UA	MCC_Turn MCC Turn	NEB SB	Val Cal	19 86	5 15	3	26 35	5	3	52 88	3 25	1
JTC 15 Nov16	A15 Sleaford Road N	A	MCC_Turn	SB	Cal	253	49	23	232	45	21	371	71	33
JTC 15_Nov16 JTC 15_Nov16	Bloxholm Lane Bloxholm Lane	UUU	MCC_Turn MCC_Turn	WB WB	Cal Cal	1 92	0	0	1 30	0 8	0 1	0 47	0 25	0
JTC 15_Nov16 JTC 15_Nov16	A15 Sleaford Road S A15 Sleaford Road S	A	MCC_Turn MCC_Turn	NB NB	Cal Cal	292	56 0	26 0	231	44	21 0	261 1	50 0	23 0
JTC 16_Nov16 JTC 16_Nov16	B1188 Lincoln Road B1188 Lincoln Road	B	MCC_Turn MCC_Turn	NWB NWB	Val Val	21 418	4 33	1 14	24 292	3 39	3 22	52 327	6 23	0
JTC 16_Nov16	B1131 Canwick Avenue	В	MCC_Turn	NB	Val	386	35	22	250	38	22	332	32	11
JTC 16_Nov16 JTC 16_Nov16	B1131 Canwick Avenue B1188 Canwick Hill	B	MCC_Turn MCC_Turn	NB SEB	Val Val	15 197	0 57	2 24	20 321	39	22	14 521	2 26	0 9
JTC 16_Nov16 JTC 17_Nov16	B1188 Canwick Hill B1188 Canwick Hill N	B	MCC_Turn MCC_Turn	SEB SB	Val Cal	285 55	64 8	37 5	292 116	38 13	23 5	579 199	35 11	4
JTC 17_Nov16 JTC 17 Nov16	B1188 Canwick Hill N Heighington Road	BU	MCC_Turn MCC_Turn	SB WB	Cal Cal	433 50	118 3	55 3	586 26	73 5	41	1022 50	52 12	16 0
JTC 17_Nov16 JTC 17_Nov16	Heighington Road B1188 Canwick Hill S	U B	MCC_Turn MCC_Turn	WB NB	Cal	164 791	8	2	44 513	5 76	4	33 582	5 49	1
JTC 17_Nov16	B1188 Canwick Hill S	В	MCC_Turn	NB	Cal	24	3	2	26	3	1	67	3	1
JTC 18_Nov16 JTC 18_Nov16	A15 St Catherines A15 St Catherines	A	MCC_Turn MCC_Turn	SB SB	Val Val	474 446	44 95	25 44	378 555	37 97	30 45	546 842	24 96	13 20
JTC 18_Nov16 JTC 18 Nov16	A15 Cross O'Cliff Hill A15 Cross O'Cliff Hill	A	MCC_Turn MCC Turn	NB NB	Val Val	149 546	21 39	12 17	100 264	18 31	12 24	114 351	19 40	3 10
JTC 18_Nov16 JTC 19 Nov16	A1434 St Catherines B1262 High Street	A B	MCC_Turn MCC Turn	NB SB	Val Cal	729 107	82 27	58 6	626 171	90 22	45 6	653 200	70 10	25 2
JTC 19_Nov16	B1262 High Street	В	MCC_Turn	SB	Cal	337	53	27	385	53	31	636	46	17
JTC 19_Nov16 JTC 19_Nov16	B1262 High Street A15 South Park	B A	MCC_Turn MCC_Turn	SB WB	Cal Cal	9 443	1 57	0 34	10 428	2 63	36	9 553	48	0 15
JTC 19_Nov16 JTC 19_Nov16	A15 South Park A15 South Park	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	209	30 0	6 0	183 1	21 1	7	130 0	12 0	2
JTC 19_Nov16 JTC 19_Nov16	A15 St Catherines A15 St Catherines	A A	MCC_Turn MCC_Turn	NB NB	Cal Cal	680 501	68 54	34 31	353 408	54 58	31 36	440 451	41 47	15 14
JTC 19_Nov16	A15 St Catherines	A	MCC_Turn	NB	Cal	112	17	8	107	14	9	139	18	3
JTC 20_Nov16 JTC 20_Nov16	B1262 High Street N B1262 High Street N 57400 High Street N	B	MCC_Turn MCC_Turn	SB SB	Cal Cal	181 86	57 14	15	237 117	34 16	17 8	400	21 21	10 6
JTC 20_Nov16 JTC 20_Nov16	B1262 High Street S B1262 High Street S	B B	MCC_Turn MCC_Turn	NB NB	Cal Cal	389 474	45 69	4	288 250	33 33	8 18	239 274	16 26	0 11
JTC 20_Nov16 JTC 20_Nov16	B1360 Dixon Street B1360 Dixon Street	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	156 216	19 27	5 6	93 295	16 31	9 7	87 302	8 27	4
JTC 21_Nov16 JTC 21_Nov16	Boultham Park Road N Boultham Park Road N	UU	MCC_Turn MCC_Turn	SB SB	Cal Cal	1 27	0	0	4 18	1	0	8 28	1	0
JTC 21_Nov16	Boultham Park Road N	U	MCC_Turn	SB WB	Cal	28	3	0	23	3	1	19	1	0
JTC 21_Nov16 JTC 21_Nov16	B1360 Dixon Street E B1360 Dixon Street E	B	MCC_Turn MCC_Turn	WB	Cal Cal	133 372	9 36	13 7	148 353	14 48	14 13	213 272	23 23	0
JTC 21_Nov16 JTC 21_Nov16	B1360 Dixon Street E Boultham Park Road S	BU	MCC_Turn MCC_Turn	WB NB	Cal Cal	4 316	0 41	0	4	1 24	0	9 156	1 16	0
JTC 21_Nov16 JTC 21 Nov16	Boultham Park Road S Boultham Park Road S	UU	MCC_Turn MCC Turn	NB NB	Cal Cal	60 199	4	0	25 112	4	0 14	73 111	9	0
JTC 21_Nov16 JTC 21 Nov16	B1360 Dixon Street W B1360 Dixon Street W	B	MCC_Turn MCC Turn	EB EB	Cal Cal	23 227	3 42	0	30 374	4 41	1 10	48 374	4	0
JTC 21_Nov16 JTC 22_Nov16	B1360 Dixon Street W B1003 Tritton Road N	B	MCC_Turn MCC Turn	EB	Cal Val	78	19	1	160 1021	19 112	2	213 1093	27	0 15
JTC 22_Nov16	B1003 Tritton Road S	В	MCC_Turn	NB	Val	981	152	38	829	102	31	794	63	12
JTC 22_Nov16 JTC 23_Nov16	Green Lane Rope Walk E	UUU	MCC_Turn MCC_Turn	EB WB	Val Cal	41 16	27 1	3	129 68	22 3	3 1	184 56	14 0	2
JTC 23_Nov16 JTC 23_Nov16	Rope Walk E The Sidings	UUU	MCC_Turn MCC_Turn	WB NB	Cal Cal	220 19	55 2	32 2	234 294	43 9	32 1	331 146	14 9	15 0
JTC 23_Nov16 JTC 23 Nov16	The Sidings Rope Walk W	UU	MCC_Turn MCC Turn	NB EB	Cal Cal	8 502	1 73	0 42	59 265	3 46	1 32	37 338	2 14	1 14
JTC 23_Nov16 JTC 24_Nov16	Rope Walk W St Mark Street	U	MCC_Turn MCC Turn	EB WB	Cal Val	103 278	5 44	0 29	243 275	8 37	2 27	355 294	5 16	0 13
JTC 24_Nov16 JTC 24_Nov16	St Mark Street Rope Walk	U U U	MCC_Turn MCC Turn	WB EB	Val Val	95 119	14	1	64 71	8	3	50 83	6	2
JTC 24_Nov16	Rope Walk	U	MCC_Turn	EB	Val	253	44	30	269	40	29	355	23	17
JTC 25_Nov16 JTC 25_Nov16	Tentecroft Street Tentecroft Street	UUU	MCC_Turn MCC_Turn	WB WB	Cal Cal	94 178	14 22	15 15	98 187	18 23	22 17	161 209	16 15	21 11
JTC 25_Nov16 JTC 25_Nov16	B1262 High Street B1262 High Street	B	MCC_Turn MCC_Turn	NB NB	Cal Cal	188 112	25 14	9 19	174 54	22 13	9 19	195 51	16 4	4
JTC 25_Nov16 JTC 25_Nov16	St Mark Street St Mark Street	UU	MCC_Turn MCC_Turn	EB EB	Cal Cal	127 133	18 15	13	117 132	14 17	15 6	142 208	8	10 3
JTC 26_Nov16 JTC 26_Nov16	B1262 High Street N B1262 High Street N	B	MCC_Turn MCC_Turn	SB SB	Cal Cal	38 189	2 28	2 19	40 190	6 29	1 27	44 324	5 23	1 23
JTC 26_Nov16 JTC 26_Nov16	Portland Street B1262 High Street S	UB	MCC_Turn MCC Turn	WB NB	Cal	68 300	3	1 28	65 227	7	1 27	92 246	6 19	0
JTC 26_Nov16	B1262 High Street S	В	MCC_Turn	NB	Cal	128	12	1	85	11	2	136	9	0
JTC 27_Nov16 JTC 27_Nov16	Temp Bus Station Temp Bus Station	UU	MCC_Turn MCC_Turn	SB SB	Val Val	1	0	27 0	4	1	27 0	0	0	29 0
JTC 27_Nov16 JTC 27_Nov16	Temp Bus Station Tentecroft Street E	UU	MCC_Turn MCC_Turn	SB WB	Val Val	0 25	0	25 1	2 9	1	30 0	3	1	30 0
JTC 27_Nov16 JTC 27_Nov16	Tentecroft Street E Tentecroft Street E	UU	MCC_Turn MCC_Turn	WB WB	Val Val	260 0	46 0	29 22	261 3	43	21 27	307 1	23 0	4 28
JTC 27_Nov16 JTC 27_Nov16	Magistrates Court car park Magistrates Court car park	UU	MCC_Turn MCC_Turn	NB NB	Val Val	17 0	4	0	14 0	2	0	32 0	1	0
JTC 27_Nov16	Magistrates Court car park	U	MCC_Turn	NB	Val	4	0	0	6	1	0	11	1	0
JTC 27_Nov16 JTC 27_Nov16	Tentecroft Street W Tentecroft Street W Tentecroft Street W	UU	MCC_Turn MCC_Turn	EB	Val Val	4	0 33	28 22	3 154	0 28	15	183	0	25 4
JTC 27_Nov16 JTC 28_Nov16	Tentecroft Street W Car park	UU	MCC_Turn MCC_Turn	EB SB	Val Cal	64 2	4	2	9 9	1	0	5 4	0	0
JTC 28_Nov16 JTC 28_Nov16	Car park Car park	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	1 4	3	1	6 8	1	1	8 12	1	0
JTC 28_Nov16 JTC 28_Nov16	East-West Link E East-West Link E	UU	MCC_Turn MCC_Turn	WB WB	Cal Cal	48 150	17 37	5 42	85 202	17 36	10 38	68 221	9 22	2 24
JTC 28_Nov16 JTC 28_Nov16	East-West Link E Kesteven Street	Ŭ	MCC_Turn MCC_Turn	WB NB	Cal	10 134	3	2	6 65	2	1	2	1	0
JTC 28_Nov16	Kesteven Street	U	MCC_Turn	NB	Cal	6	1	0	5	1	1	3	0	0
JTC 28_Nov16 JTC 28_Nov16	Kesteven Street East-West Link W	UUU	MCC_Turn MCC_Turn	NB EB	Cal Cal	137 19	30 0	6	153 8	21 2	14 2	73 6	6 0	3
JTC 28_Nov16 JTC 28_Nov16	East-West Link W East-West Link W	UU	MCC_Turn MCC_Turn	EB EB	Cal Cal	108 39	28 5	27 16	112 46	16 10	21 22	125 63	6 6	11 23
JTC 29_Nov16 JTC 29_Nov16	East-West Link East-West Link	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	149 100	17 36	15 21	83 191	15 25	17 19	25 183	5	7
JTC 29_Nov16 JTC 29_Nov16	Great Northern Terrace Great Northern Terrace	UU	MCC_Turn MCC_Turn	WB WB	Cal Cal	16 2	19 4	12 1	73 18	14 5	11 2	73 29	4	2
JTC 29_Nov16 JTC 29_Nov16	Great Northern Terrace Kesteven Street S	U U	MCC_Turn MCC_Turn	WB NB	Cal	14	19 13	10 4	55 47	10 12	11	40 75	8	5
JTC 29_Nov16	Kesteven Street S	U	MCC_Turn	NB	Cal	203	37	40	240	44	38	247	26	21
JTC 29_Nov16 JTC 30_Nov16	Kesteven Street S A15 Canwick Road S	U A	MCC_Turn MCC_Turn	NB NB	Cal Cal	50 251	11 25	5 14	52 202	15 29	10 23	23 131	3 11	5 9
JTC 30_Nov16 JTC 30_Nov16	A15 Canwick Road S Portland Street	A U	MCC_Turn MCC_Turn	NB EB	Cal Cal	1190 127	105 40	48 28	778 177	107 40	55 35	957 229	83 24	28 24
JTC 31_Nov16 JTC 31_Nov16	A15 Canwick Road N A15 Canwick Road N	A A	MCC_Turn MCC_Turn	SB SB	Val Val	286 788	49 105	40 45	347 821	72 107	53 57	344 1408	43 116	45 31
JTC 31_Nov16 JTC 31_Nov16	Kesteven Street A15 Canwick Road S	U	MCC_Turn MCC_Turn	WB NB	Val Val	83 1458	51 116	29 54	267 971	41 133	28 75	308 1035	17	9 39
JTC 32_Nov16 JTC 32_Nov16 JTC 32_Nov16	A57 Wigford Way N A57 Wigford Way N	A	MCC_Turn MCC_Turn	SB	Cal	93	17	8	102 32	11	6	70	6	1
JTC 32_Nov16	A57 Wigford Way S	A	MCC_Turn	NB	Cal	3	1	0	11	1	0	6	2	0
JTC 32_Nov16	A57 Wigford Way S	A	MCC_Turn	NB	Cal	49	13	5	129	13	8	131	9	1

JTC 32_Nov16	Brayford Wharf East	U	MCC_Turn	EB	Cal	148	22	5	151	14	8	206	9	2
JTC 32_Nov16 JTC 33 Nov16	Brayford Wharf East A15 Lindum Road	UA	MCC_Turn MCC_Turn	EB SB	Cal Cal	23 47	5		31 19	2	2	25 29	3	0
JTC 33_Nov16 JTC 33_Nov16	A15 Lindum Road B1308 Monks Road	AB	MCC_Turn MCC_Turn	SB WB	Cal	605 43	73	45	520 96	65 21	56 11	706	49 15	32
JTC 33_Nov16	B1308 Monks Road	В	MCC_Turn	WB	Cal	217	24	10	246	35	8	287	14	1
JTC 33_Nov16 JTC 33_Nov16	A15 Broadgate A15 Broadgate	A	MCC_Turn MCC_Turn	NB NB	Cal Cal	220 951	20 93	8 40	142 581	24 89	11 56	150 824	17 103	7 47
JTC 33_Nov16 JTC 33_Nov16	Silver Street Silver Street	UU	MCC_Turn MCC_Turn	EB EB	Cal Cal	41 92	8 12	5	89 153	10 15	4	55 162	1 10	0
JTC 33_Nov16 JTC 33_Nov16	Silver Street Silver Street	UU	MCC_Turn MCC_Turn	EB EB	Cal Cal	355 355	41 47	16 20	258 300	44 43	15 30	420 363	35 25	11
JTC 34_Nov16	B1273 Yarborough Road	В	MCC_Turn	SB	Cal	1	0	1	2	0	0	2	1	0
JTC 34_Nov16 JTC 34_Nov16	B1273 Yarborough Road B1273 Yarborough Road	B B	MCC_Turn MCC_Turn	SB SB	Cal Cal	127 283	28 30	12	75 245	12 27	2 11	52 199	3 12	4
JTC 34_Nov16 JTC 34 Nov16	Victoria Terrace Victoria Terrace	UU	MCC_Turn MCC Turn	WB WB	Cal Cal	4	0		2	1	0	2	0	0
JTC 34_Nov16 JTC 34_Nov16	Victoria Terrace B1308 Yarborough Road	UB	MCC_Turn MCC_Turn	WB NWB	Cal Cal	8	0		3 2	1	0	5	0	0
JTC 34_Nov16	B1308 Yarborough Road	В	MCC_Turn	NWB	Cal	58	5	3	65	12	4	78	6	2
JTC 34_Nov16 JTC 34_Nov16	B1308 Yarborough Road B1273 The Avenue	B B	MCC_Turn MCC_Turn	NWB NB	Cal Cal	0 357	0 55	15	1 412	0 45	0 16	320	0 20	6
JTC 35_Nov16 JTC 35_Nov16	A15 Wragby Road A15 Wragby Road	A	MCC_Turn MCC_Turn	SB SB	Val Val	489	59 1	43 0	484 3	58 1	45	518 3	41	20 0
JTC 35_Nov16 JTC 35_Nov16	A15 Lindum Road A15 Lindum Road	A	MCC_Turn MCC_Turn	NB NB	Val Val	276 771	39 65	9 33	214 525	31 69	17 45	376 617	46 63	15 31
JTC 35_Nov16	Pottergate	U	MCC_Turn	EB	Val	7	1	0	2	0	0	2	0	0
JTC 35_Nov16 JTC 36_Nov16	Pottergate Northgate	UU	MCC_Turn MCC_Turn	EB SB	Val Cal	27 332	27	6 11	5 159	1 18	10 10	191	21	10 0
JTC 36_Nov16 JTC 36_Nov16	Northgate Northgate	U	MCC_Turn MCC_Turn	SB SB	Cal Cal	46	3		18 2	1	25 0	15	0	11
JTC 36_Nov16 JTC 36_Nov16	Eastgate E Eastgate E	UU	MCC_Turn MCC_Turn	WB WB	Cal Cal	5	4		5	0	0	8	0	0
JTC 36_Nov16	Eastgate E	U	MCC_Turn	WB	Cal	183	13	6	177	22	9	268	26	7
JTC 36_Nov16 JTC 36_Nov16	Priory Gate Priory Gate	UUU	MCC_Turn MCC_Turn	NB NB	Cal Cal	0 270	0 67		1 194	0 29	0 38	1 327	0 45	0 15
JTC 36_Nov16 JTC 36_Nov16	Priory Gate Eastgate W	UUU	MCC_Turn MCC_Turn	NB EB	Cal Cal	10 55	0		7 71	1	0	8 55	0	0
JTC 36_Nov16 JTC 36_Nov16	Eastgate W Eastgate W	U	MCC_Turn MCC_Turn	EB	Cal	74	13	2	75	11	2	57	3	0
JTC 37_Nov16	A15 Wragby Road N	A	MCC_Turn	SB	Val	7	1	1	15	3	1	18	0	0
JTC 37_Nov16 JTC 37_Nov16	A15 Wragby Road N A15 Wragby Road N	A A	MCC_Turn MCC_Turn	SB SB	Val Val	390 17	40 1	0	374 36	51 4	50 1	410 31	55 1	37 0
JTC 37_Nov16 JTC 37_Nov16	B1308 Greetwell Road B1308 Greetwell Road	B	MCC_Turn MCC_Turn	WB WB	Val Val	80 125	11 10		141 155	14 19	12	144 264	8 12	8
JTC 37_Nov16 JTC 37 Nov16	B1308 Greetwell Road	В	MCC_Turn MCC Turn	WB NB	Val Val Val	8	0	0	13	13	0	30	1	0
JTC 37_Nov16	A15 Wragby Road S A15 Wragby Road S	A	MCC_Turn	NB	Val	21 181	35	30	233	44	30	314	47	20
JTC 37_Nov16 JTC 38 Nov16	A15 Wragby Road S Queensway	A U	MCC_Turn MCC Turn	NB SB	Val Cal	218 363	39 16		211 169	41 17	14	138 151	31 15	15 3
JTC 38_Nov16 JTC 38 Nov16	Queensway B1308 Greetwell Road E	U B	MCC_Turn MCC_Turn	SB WB	Cal Cal	6 153	0 22		4 279	2 27	0 10	5 447	1	0
JTC 38_Nov16	B1308 Greetwell Road E	B	MCC_Turn	WB EB	Cal	94	11	1	86	9	2	180	5	0
JTC 38_Nov16 JTC 38_Nov16	B1308 Greetwell Road W B1308 Greetwell Road W	В	MCC_Turn MCC_Turn	EB	Cal	429	31	9	312	38	13	252	33	9
JTC 39_Nov16 JTC 39_Nov16	Lee Road Lee Road	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	92 116	6		23 43	2	2	21 49	7	1
JTC 39_Nov16 JTC 39 Nov16	Lee Road A15 Wragby Road E	UA	MCC_Turn MCC_Turn	SB WB	Cal Cal	43 215	5 5	1	17 106	4 10	1	17 83	1 10	0
JTC 39_Nov16	A15 Wragby Road E	A	MCC_Turn	WB	Cal	335	36		261	36	33	292 55	25	13
JTC 39_Nov16 JTC 39_Nov16	A15 Wragby Road E Queensway	A U	MCC_Turn MCC_Turn	WB NB	Cal Cal	62 11	0		38 1	3 0	0	1	0	0
JTC 39_Nov16 JTC 39_Nov16	Queensway Queensway	UU	MCC_Turn MCC_Turn	NB NB	Cal Cal	63 31	8	0	49 39	6 4	1	124 63	6	0
JTC 39_Nov16 JTC 39_Nov16	A15 Wragby Road W A15 Wragby Road W	A	MCC_Turn MCC Turn	EB EB	Cal Cal	34 247	2 35	2 24	31 283	4 42	2 34	116 470	4	1 24
JTC 39_Nov16	A15 Wragby Road W	A	MCC_Turn	EB	Cal	23	3	2	23	3	1	28	1	0
JTC 40_Nov16 JTC 40_Nov16	B1182 Ruskin Avenue B1182 Ruskin Avenue	B B	MCC_Turn MCC_Turn	SB SB	Cal Cal	195 350	16	12	275 169	31 19	8 20	267 181	15	8
JTC 40_Nov16 JTC 40_Nov16	A15 Wragby Road E A15 Wragby Road E	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	299 141	21 25	21	238 195	31 21	23 5	242 214	16 21	10 3
JTC 40_Nov16 JTC 40_Nov16	A15 Wragby Road W A15 Wragby Road W	A	MCC_Turn MCC_Turn	EB EB	Cal Cal	145 278	12 32	18 21	77 282	7 35	15 29	116 386	7	7 15
JTC 41_Nov16 JTC 41_Nov16	B1182 Nettleham Road B1182 Nettleham Road	B	MCC_Turn MCC Turn	SB SB	Cal	117 273	8	2	97 117	11 10	5	119	10	0
JTC 41_Nov16	B1182 Nettleham Road	В	MCC_Turn	SB	Cal	307	22	3	231	20	5	287	32	1
JTC 41_Nov16 JTC 41_Nov16	B1182 Nettleham Road B1182 Ruskin Avenue	B	MCC_Turn MCC_Turn	SB WB	Cal Cal	2 54	0	0	1 21	1	0	1	0	0
JTC 41_Nov16 JTC 41_Nov16	B1182 Ruskin Avenue B1182 Ruskin Avenue	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	237 58	42 5		228 50	21 5	8 5	295 67	22 4	3
JTC 41_Nov16 JTC 41_Nov16	Nettleham Road	BU	MCC_Turn MCC_Turn	WB NB	Cal	2	0	0	1 68	0	0	2		0
JTC 41_Nov16	Nettleham Road	U	MCC_Turn	NB	Cal	189	21	4	172	16	6	314	26	6
JTC 41_Nov16 JTC 41_Nov16	Nettleham Road Nettleham Road	UU	MCC_Turn MCC_Turn	NB NB	Cal Cal	28 1	3		29 1	2	1	46 1	3	1
JTC 41_Nov16 JTC 41_Nov16	B1273 Longdales Road B1273 Longdales Road	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	184 447	21 37		231 341	18 43	4	239 383	16 37	3
JTC 41_Nov16 JTC 41_Nov16	B1273 Longdales Road B1273 Longdales Road	B	MCC_Turn MCC_Turn	EB	Cal	178	14	7	44 3	6	2	51	6	2
JTC 42_Nov16	Nettleham Road N	U	MCC_Turn	SB	Val	241	19	10	68	9	2	73	7	2
JTC 42_Nov16 JTC 42_Nov16	Nettleham Road N Lee Road	UUU	MCC_Turn MCC_Turn	SB WB	Val Val	310 77	17 5	0	89 34	8	4	83 52	4	6 0
JTC 42_Nov16 JTC 42_Nov16	Lee Road Nettleham Road S	UUU	MCC_Turn MCC_Turn	WB NB	Val Val	94 168	10 26		83 164	9 15	3	252 274	12 21	1
JTC 42_Nov16 JTC 43_Nov16	Nettleham Road S B1226 Riseholme Road	UB	MCC_Turn MCC_Turn	NB SB	Val Cal	17 217	2	2	16 158	3	1	14	3	1
JTC 43_Nov16	B1226 Riseholme Road	В	MCC_Turn MCC_Turn	SB	Cal	331	30	10	171	18	7	228	11	6
JTC 43_Nov16 JTC 43_Nov16	B1226 Riseholme Road B1226 Riseholme Road	B	MCC_Turn	SB SB	Cal Cal	111	27	0	122	16 0	0	139	8	0
JTC 43_Nov16 JTC 43_Nov16	B1273 Longdales Road B1273 Longdales Road	BB	MCC_Turn MCC_Turn	WB WB	Cal Cal	120 312	10 36	8	49 327	3 30	1		1 29	1
JTC 43_Nov16 JTC 43_Nov16	B1273 Longdales Road B1273 Longdales Road	BB	MCC_Turn MCC_Turn	WB WB	Cal Cal	153 1	23 0	11	131 2	17	8	259 7	12 0	3
JTC 43_Nov16	Newport	U	MCC_Turn	NB	Cal	48	2	3	61	9	2	136	11	1
JTC 43_Nov16 JTC 43_Nov16	Newport Newport	U	MCC_Turn MCC_Turn	NB NB	Cal Cal	201 48	23 6	0	154 56	26 5	8		29 2	9
JTC 43_Nov16 JTC 43_Nov16	Newport B1273 Yarborough Crescent	UB	MCC_Turn MCC_Turn	NB EB	Cal Cal	3 141	2 27	0 8	4 131	0 21	0	0 155	0	6
JTC 43_Nov16 JTC 43_Nov16	B1273 Yarborough Crescent B1273 Yarborough Crescent	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	421 126	45 10	11	383 53	39 5	8	365 58	34 5	4
JTC 43_Nov16	B1273 Yarborough Crescent	В	MCC_Turn	EB	Cal	3	0	0	1	1	0	1	0	0
JTC 44_Nov16 JTC 44_Nov16	B1273 Yarborough Crescent B1273 Yarborough Crescent	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	125 270	22 36	15	99 308	11 36	2	333	6 24	5
JTC 44_Nov16 JTC 44_Nov16	B1273 Yarborough Crescent B1273 Yarborough Crescent	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	71 0	5		81 5	8 0	2	218 0	24 0	0
JTC 44_Nov16 JTC 44_Nov16	Burton Road Burton Road	UU	MCC_Turn MCC_Turn	NB NB	Cal Cal	30 70	2	0	46 85	5 10	2	64 252	5 13	0
JTC 44_Nov16	Burton Road	U	MCC_Turn	NB	Cal	67	10	1	105	12	3	135	9	1
JTC 44_Nov16	Burton Road	U	MCC_Turn	NB	Cal	1	0	0	/	1	0	6	0	0

JTC 44_Nov16	B1273 Yarborough Road	В	MCC_Turn	EB	Cal	77	26	2	115	18	5	241	22
JTC 44_Nov16 JTC 44_Nov16	B1273 Yarborough Road B1273 Yarborough Road	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	465 130	62 14	20 5	386 97	46 13	13 4	385 75	21
JTC 44_Nov16 JTC 44_Nov16	B1273 Yarborough Road	B	MCC_Turn	EB	Cal	1	0	0	3	1	1	1	0
JTC 44_Nov16	B1398 Burton Road B1398 Burton Road	В	MCC_Turn MCC_Turn	SB	Cal	324	12	4	86	8	5	91	12
JTC 44_Nov16 JTC 44_Nov16	B1398 Burton Road B1398 Burton Road	B	MCC_Turn MCC_Turn	SB SB	Cal Cal	170 0	24 0	1	105 1	16 0	5 0	105 1	15 0
ATC1_Nov16 ATC1 Nov16	A1500 Till Bridge Lane A1500 Till Bridge Lane	A	ATC ATC	EB WB	Cal Cal	284 193	55 37	26 17	122 132	23 25	11 12	192 289	37 56
ATC2_Nov16 ATC2_Nov16	B1398 High Street B1398 High Street	B	ATC	SB NB	Cal	198 81	42	7	81 78	17	3	107	23 40
ATC3_Nov16	A15	А	ATC	SB	Cal	457	70	102	310	60	82	424	76
ATC3_Nov16 ATC4_Nov16	A15 Hackthorn Road	A U	ATC ATC	NB SB	Cal Cal	371 72	78 15	100 3	334 49	61 10	77 2	499 68	78 15
ATC4_Nov16 ATC5_Nov16	Hackthorn Road A158 Station Road	U	ATC ATC	NB WB	Cal Cal	79 520	17 77	3 46	49 390	10 58	2 47	72 434	15 50
ATC5_Nov16 ATC6_Nov16	A158 Station Road Ferry Road	A U	ATC ATC	EB WB	Cal Cal	379 181	56 24	34 8	405 56	60 10	49	545 70	62 8
ATC6_Nov16	Ferry Road	U	ATC	EB	Cal	56	7	3	66	11	4	154	17
ATC7_Nov16 ATC7_Nov16	B1188 Sleaford Road B1188 Sleaford Road	вв	ATC ATC	NB SB	Cal Cal	305 267	65 57	11 10	219 214	46 45	8 8	328 368	70 78
ATC8_Nov16 ATC8_Nov16	A15 Sleaford Road A15 Sleaford Road	A	ATC ATC	NB SB	Cal Cal	504 359	80 57	34 24	317 242	59 45	37 28	504 492	65 63
ATC9_Nov16 ATC9_Nov16	A607 Grantham Road A607 Grantham Road	A	ATC ATC	NB SB	Cal Cal	251 312	48 60	23 28	203 199	39 38	18 18	341 292	66 56
ATC10_Nov16	Hopyard Lane	U	ATC	NB	Cal	81	17	3	49	10	2	100	21
ATC10_Nov16 ATC11_Nov16	Hopyard Lane Norton Road	UUU	ATC ATC	SB NB	Cal Cal	85 19	18 4	3	47 27	10 6	2	74 53	16 11
ATC11_Nov16 ATC12_Nov16	Norton Road A46	UA	ATC ATC	SB NB	Cal Cal	58 989	12 177	2 128	24 800	5 155	1 141	21 1405	4 186
ATC12_Nov16 ATC13_Nov16	A46 Collingham Road	A U	ATC ATC	SB EB	Cal Cal	1076 46	192 10	139 2	789 30	153 6	139 1	1100 35	146
ATC13_Nov16	Collingham Road	U	ATC	WB	Cal	32	7	1	30	6	1	39	8
ATC14_Nov16 ATC14_Nov16	Swinderby Road Swinderby Road	UUU	ATC ATC	EB WB	Cal Cal	5	1	0	4	1	0	6 4	1
ATC15_Nov16 ATC15_Nov16	Swinderby Road Swinderby Road	UU	ATC ATC	EB WB	Cal Cal	21 16	4	1	10 11	2	0	15 12	3
ATC16_Nov16 ATC16_Nov16	Eagle Road Eagle Road	UUU	ATC ATC	EB WB	Cal Cal	29 15	6 3	1	19 19	4	1	15 25	3
ATC17_Nov16 ATC17_Nov16	Wigsley Road Wigsley Road	U	ATC	EB	Cal	23 25	5	1	19 18	4	1	24 21	5
ATC18_Nov16	Brown Lane	U U U	ATC	EB	Cal	23	5	1	18	4	1	22	5
ATC18_Nov16 ATC19_Nov16	Brown Lane A57	A	ATC ATC	WB EB	Cal	21 354	4 68	1 32	19 236	45	1 21	20 363	70
ATC19_Nov16 ATC20_Nov16	A57 B1190 Carr Lane	A B	ATC ATC	WB SB	Cal Cal	320 337	61 72	29 13	249 160	48 34	22 6	371 224	71 48
ATC20_Nov16 ATC21_Nov16	B1190 Carr Lane A57 Lincoln Road	B	ATC ATC	NB EB	Cal Val	239 474	51 72	9 54	170 336	36 65	6 30	362 463	77 53
ATC21_Nov16 ATC22_Nov16	A57 Lincoln Road B1398 Middle Street	A	ATC	WB SB	Val Val	358 430	55 91	41	358 156	69 33	32	538 268	62 57
ATC22_Nov16	B1398 Middle Street	B	ATC	NB	Val	122	26	5	120	25	4	288	61
ATC23_Nov16 ATC23_Nov16	A15 A15	A	ATC ATC	SB NB	Val Val	485 419	75 88	108 112	373 386	72 71	99 89	478 574	86 90
ATC24_Nov16 ATC24_Nov16	A46 Welton Road A46 Welton Road	A	ATC ATC	NB SB	Cal Cal	459 733	69 110	18 29	397 373	58 55	26 25	725 428	84 50
ATC25_Nov16 ATC25_Nov16	B1188 Sleaford Road B1188 Sleaford Road	В	ATC ATC	NB SB	Val Val	319 220	46 32	17 12	218 233	32 34	16 17	273 409	31 46
ATC26_Nov16	A15 Sleaford Road	A	ATC	NB	Val	291 271	49	27	228 228	32	33 33	282	19
ATC26_Nov16 ATC27_Nov16	A15 Sleaford Road A607 Grantham Road	A	ATC ATC	SB NB	Val Cal	616	46 72	26 29	294	32 37	17	447 416	31 37
ATC27_Nov16 ATC28_Nov16	A607 Grantham Road Station Road	A U	ATC ATC	SB WB	Cal Cal	385 306	45 65	18 11	324 236	40 50	19 9	615 432	55 92
ATC28_Nov16 ATC29_Nov16	Station Road Somerton Gate Lane	UUU	ATC ATC	EB WB	Cal Cal	335 31	71 7	13 1	222 22	47 5	8	257 62	55 13
ATC29_Nov16 ATC30_Nov16	Somerton Gate Lane Low Road	UU	ATC ATC	EB NB	Cal Cal	24 268	5 30	1	11 134	2 18	0	13 316	3 42
ATC30_Nov16 ATC31_Nov16	Low Road South Hykeham Road	UU	ATC ATC	SB NB	Cal Cal	201 148	23 31	8	138 64	18 14	6	223 94	30 20
ATC31_Nov16	South Hykeham Road	U	ATC	SB	Cal	76	16	3	56	12	2	77	16
ATC32_Nov16 ATC32_Nov16	Middle Lane	U	ATC ATC	EB WB	Cal Cal	129	20 28	5	66 55	14 12	2	127 76	27 16
ATC33_Nov16 ATC33_Nov16	Moor Lane Moor Lane	U	ATC ATC	EB WB	Cal Cal	57 41	12 9	2	32 41	9	1	21 20	5
ATC34_Nov16 ATC34 Nov16	Whisby Road Whisby Road	UUU	ATC ATC	EB WB	Cal Cal	285 74	25 11	29 16	91 89	14 13	12 10	99 393	12 43
ATC35_Nov16 ATC35_Nov16	B1190 Lincoln Road B1190 Lincoln Road	B	ATC ATC	EB WB	Val Val	337 228	48 38	29 27	194 227	37 35	20 15	213 406	39 37
ATC36_Nov16	Lincoln Road	U	ATC	WB	Cal	184	27	7	179	39	12	269	37 33 40
ATC36_Nov16 ATC37_Nov16	Lincoln Road A57 Saxilby Road	A	ATC	EB WB	Cal Cal	295 351	32 53	40	370	37 71	33	190 512	59
ATC37_Nov16 ATC38_Nov16	A57 Saxilby Road B1398 Middle Street	A B	ATC ATC	EB NB	Cal Cal	457 182	70 39	52 7	416 162	80 34	37 6	521 436	60 93
ATC38_Nov16 ATC39_Nov16	B1398 Middle Street A15	B	ATC ATC	SB NB	Cal Cal	445 434	95 91	17 116	147 408	31 75	5 94	224 524	48 82
ATC39_Nov16 ATC40 Nov16	A15 A46 Lincoln Road	A	ATC ATC	SB NB	Cal Val	514 568	79 89	114 33	413 513	80 62	110 37	507 892	91 83
ATC40_Nov16 ATC40_Nov16 ATC44_Nov16	A46 Lincoln Road Brant Road Brant Road	A A U	ATC	SB	Val Val Val	859 399	71 55	33 30 18	503 280	68 43	37 30 15	592 593 458	68 61
ATC44_Nov16	Brant Road	U	ATC	SB	Val	322	45	14	257	39	13	347	46
ATC45_Nov16 ATC45_Nov16	Lincoln Road Lincoln Road	υυ	ATC ATC	NB SB	Val Val	312 309	29 29	12 12	215 212	25 25	11 11	322 306	28 26
ATC46_Nov16 ATC46_Nov16	A1434 Newark Road A1434 Newark Road	A A	ATC ATC	EB WB	Val Val	552 443	87 70	34 27	574 524	54 49	32 29	645 538	71 59
ATC47_Nov16 ATC47_Nov16	B1190 Doddington Road B1190 Doddington Road	B	ATC	WB EB	Cal	579 370	99 63	38 24	484 432	82 73	17 16	531 456	51 44
ATC48_Nov16 ATC48_Nov16	B1378 Skellingthorpe Road B1378 Skellingthorpe Road	B	ATC ATC	WB EB	Val	274 337	53 48	21	414 361	57 50	16	488	52 60
ATC50_Nov16	Long Leys Road	U	ATC	WB	Val	212	36	8	208	35	8	363	61
ATC50_Nov16 ATC51_Nov16	Long Leys Road B1398 Burton Road	UB	ATC ATC	EB NB	Val Val	264 209	45 24	10 7	169 261	29 31	6 10	227 606	38 48
ATC51_Nov16 ATC52_Nov16	B1398 Burton Road B1226 Riseholme Road	вв	ATC ATC	SB NB	Val Val	481 526	56 62	15 18	249 496	30 58	10 19	313 650	25 49
ATC52_Nov16 ATC53_Nov16	B1226 Riseholme Road B1182 Nettleham Road	B	ATC ATC	SB NB	Val Val	597 362	71 35	21 10	428 453	50 45	16 17	538 621	40 51
ATC53_Nov16 ATC55_Nov16	B1182 Nettleham Road B1308 Greetwell Road	B	ATC ATC	SB	Val Val	677 296	65 23	18	462	46	17	552 316	46
ATC55_Nov16	B1308 Greetwell Road	В	ATC	WB	Val	411	32	13	288	31	10	306	21
ATC56_Nov16 ATC56_Nov16	B1308 Monks Road B1308 Monks Road	B	ATC ATC	EB WB	Cal Cal	461 432	63 59	24 22	554 431	78 61	29 23	651 459	50 35
ATC57_Nov16 ATC57_Nov16	B1190 Washingborough Road B1190 Washingborough Road	B B	ATC ATC	EB WB	Val Val	133 302	28 64	5 11	212 254	45 54	8 10	258 207	55 44
ATC58_Nov16 ATC58_Nov16	B1188 Canwick Road B1188 Canwick Road	B	ATC ATC	NB SB	Val Val	923 474	73 123	37 58	578 678	84 83	48 45	623 1166	55 61
ATC61_Nov16 ATC61_Nov16	Boultham Park Road Boultham Park Road	UUU	ATC ATC	NB SB	Val Val	533 259	66 32	16 8	306 319	37 39	12 13	334 470	30 43
ATC62_Nov16 ATC62_Nov16	B1003 Tritton Road B1003 Tritton Road	B	ATC ATC	NB SB	Val Val	769	133 64	31 15	687 730	85 90	24 25	537 875	41 67
ATC63_Nov16	B1003 Tritton Road	B	ATC	NB	Cal	1138	196	45	960	119	33	826	63

ATC63 Nov16	B1003 Tritton Road	В	ATC	SB	Cal	571	99	23	1010	125	35	1189	91 1
ATC64_Nov16	A57 Carholme Road	Ā	ATC	EB	Cal	660	99	34	586	58	33	611	45
ATC64_Nov16 ATC65_Nov16	A57 Carholme Road West Parade	AU	ATC ATC	WB EB	Cal Cal	542 101	81 17	28 4	606 60	60 10	34 2	657 67	49 (
ATC65_Nov16	West Parade	U	ATC	WB	Cal	63	11	2	76	13	3	103	17 4
ATC67_Nov16 ATC67_Nov16	Carline Road Carline Road	UUU	ATC ATC	WB EB	Cal Cal	54 73	9 12	2	29 26	5	1	39 38	6
ATC68_Nov16 ATC68_Nov16	Upper Long Leys Road Upper Long Leys Road	UU	ATC ATC	EB WB	Cal Cal	22 150	4 25	1	24 144	4 24	1	21 161	4 27 (
ATC69_Nov16	Burton Road	U	ATC	NB	Cal	137	23	5	156	26	6	304	51 1
ATC69_Nov16 ATC70 Nov16	Burton Road Saxon Street	U U	ATC ATC	SB NB	Cal Cal	414 42	70 7	15 2	232 25	39 4	8	223 38	38 8
ATC70_Nov16	Saxon Street	U	ATC	SB	Cal	28 11	5	1	19	3	1	25 13	4
ATC71_Nov16 ATC71_Nov16	Hereward Street Hereward Street	U	ATC ATC	NB SB	Cal Cal	13	2	0	8 8	1	0	10	2
ATC72_Nov16 ATC72_Nov16	Newport Newport	UU	ATC ATC	NB SB	Cal Cal	240 448	40 76	9 16	244 229	41 39	9 8	387 246	65 14 41 9
ATC73_Nov16	Nettleham Road	Ŭ	ATC	NB	Cal	211	18	5	191	20	7	301	19
ATC73_Nov16 ATC75_Nov16	Nettleham Road A15 Wragby Road	U A	ATC ATC	SB NB	Cal Cal	370 795	32 67	8 34	139 561	14 74	5 48	167 599	61 30
ATC75_Nov16	A15 Wragby Road	A	ATC	SB	Cal	544	66	48	492	60	46	526	43 20
ATC76_Nov16 ATC77_Nov16	Lindum Terrace B1308 Monks Road	UB	ATC ATC	WB EB	Cal Val	121 285	20 39	4 15	64 257	11 36	13	127 353	21 27
ATC77_Nov16 ATC78_Nov16	B1308 Monks Road St Rumbold's Street	BU	ATC ATC	WB EB	Val Cal	204 76	28 13	10	282 75	40 13	15	273 109	21 18
ATC78_Nov16	St Rumbold's Street	U	ATC	WB	Cal	321	54	12	172	29	6	257	43 9
ATC79_Nov16 ATC79_Nov16	Waterside North Waterside North	U U	ATC ATC	EB WB	Cal Cal	10 146	2 25	0	13 90	2 15	0	6 130	22
ATC80_Nov16 ATC80_Nov16	Waterside South	UU	ATC ATC	EB WB	Cal Cal	41 21	7	1	24 39	4	1	5 96	1 (
ATC80_N0V16 ATC82_Nov16	Waterside South B1262 High Street	B	ATC	NB	Val	300	39	28	227	35	27	246	19 10
ATC82_Nov16 ATC83 Nov16	B1262 High Street Brayford Wharf East	BU	ATC ATC	SB NB	Val Val	227 151	30 24	21 15	230 178	36 24	28 18	368 214	29 24 12 9
ATC83_Nov16	Brayford Wharf East	U	ATC	SB	Val	65	10	7	45	6	4	37	2
ATC84_Nov16 ATC84_Nov16	B1273 Brayford Way B1273 Brayford Way	вв	ATC ATC	NB SB	Val Val	910 958	157 165	36 38	885 1019	110 126	31 35	991 1127	76 14 86 10
ATC86_Nov16 ATC86_Nov16	Boultham Ávenue Boultham Avenue	UU	ATC ATC	EB WB	Val Val	57 31	7	2	47 30	6 4	2	103 50	9
ATC90_Nov16	Scorer Street	U	ATC	EB	Val	152	20	14	83	13	1	131	10 1
ATC90_Nov16 ATC91 Nov16	Scorer Street Monson Street	UUU	ATC ATC	WB EB	Val Val	97 7	13 1	9 1	81 14	12 2	10 2	110 19	9
ATC91_Nov16	Monson Street	U	ATC	WB	Val	68	9	6	64	10	8	115	9
ATC92_Nov16 ATC92_Nov16	Portland Street Portland Street	υυ	ATC ATC	EB WB	Val Val	117 49	15 6	11 5	101 41	16 6	12 5	128 51	10 4
ATC94_Nov16 ATC95_Nov16	Silver Street B1308 Clasketoate	UB	ATC ATC	EB WB	Val Val	610 424	85 59	27 19	636 471	77 57	27 20	751 523	47 14 33 10
ATC96_Nov16	Steep Hill	U	ATC	EB	Val	10	2	0	4	1	0	3	0 0
ATC97_Nov16 ATC98 Nov16	Eastgate Church Lane	UU	ATC ATC	EB EB	Val Val	130 307	12 52	4	130 181	16 30	7	131 203	12 34
ATC98_Nov16	Church Lane	U	ATC	WB	Val	538 416	91	19	411	69	15 34	567	96 20
ATC99_Nov16 ATC99_Nov16	A1434 Newark Road A1434 Newark Road	AA	ATC ATC	EB WB	Val Val	545	55 72	33 43	488 488	60 60	34	673 583	61 18 53 10
LL_MCC_36848_Jun13 LL_MCC_36848_Jun13	Brant Road Brant Road	UUU	MCC_Link MCC_Link	NB SB	Cal Cal	355 371	37 45	9 21	266 288	38 35	14 11	402 417	56 12 53 9
HUB_MCC_M3_Jul16	A15 Canwick Road	A	MCC_Turn	SB	Cal	458	77	33	631	84	47	1145	86 2
HUB_MCC_M3_Jul16 HUB_MCC_M3_Jul16	A15 Canwick Road B1188 Canwick Road	AB	MCC_Turn MCC_Turn	SB NB	Cal Cal	399 284	65 32	31 9	462 182	81 27	44 8	613 121	53 13 22 4
HUB_MCC_M3_Jul16	B1188 Canwick Road	B	MCC_Turn	NB	Cal	934	85	30	569	79	38	585	68 20
HUB_MCC_M3_Jul16 HUB_MCC_M3_Jul16	A15 South Park Avenue A15 South Park Avenue	A	MCC_Turn MCC_Turn	EB EB	Cal Cal	482 129	64 43	48 13	391 217	59 26	34 10	397 333	51 10 31 0
LEB_MCC_J1_Mar15 LEB_MCC_J1_Mar15	A46 Lincoln Road A46 Lincoln Road	A	MCC_Turn MCC_Turn	SB SB	Cal Cal	121 796	7 62	5 24	87 394	12 53	2 19	80 547	10 9 58 1
LEB_MCC_J1_Mar15	A158	A	MCC_Turn	WB	Cal	88	3	4	40	5	2	52	5 5
LEB_MCC_J1_Mar15 LEB_MCC_J1_Mar15	A158 B1182 Lincoln Road	A B	MCC_Turn MCC_Turn	WB NB	Cal Cal	394 90	49 22	41 12	389 150	62 21	47 8	553 88	78 42 5 2
LEB_MCC_J1_Mar15	B1182 Lincoln Road	В	MCC_Turn	NB	Cal	318	25	10	336	28	9	490	29 9
LEB_MCC_J1_Mar15 LEB_MCC_J1_Mar15	A46 Bypass A46 Bypass	A	MCC_Turn MCC_Turn	EB EB	Cal Cal	187 567	46 108	17 66	136 490	24 80	15 47	325 529	37 20 67 39
LEB_MCC_J1_Mar15 LEB_MCC_J1_Mar15	A46 B1182 Lincoln Road	A B	MCC_Link MCC_Link	NB SB	Cal Cal	555 759	79 49	30 20	488 437	59 44	26 14	927 527	82 34 48 2
LEB_MCC_J1_Mar15	A158	Α	MCC_Link	EB	Cal	596	98	67	486	79	45	530	67 42
LEB_MCC_J1_Mar15 LEB_MCC_J2_Mar15	A46 Bypass B1182 Nettleham Road N	AB	MCC_Link MCC Turn	WB SB	Cal Cal	652 110	97 10	62 4	612 99	104 15	64 7	680 107	94 30 10 0
LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15	B1182 Nettleham Road N	B	MCC_Turn MCC_Turn	SB SB	Cal	585	36 2	14 1	306 103	25	7	371	28 9 10
LEB_MCC_J2_Mar15	B1182 Nettleham Road N Outer Circle Drive	U	MCC_Turn	WB	Cal Cal	68 102	11	8	130	10	2	88 169	11 :
LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15	Outer Circle Drive Outer Circle Drive	UUU	MCC_Turn MCC_Turn	WB WB	Cal Cal	17 85	1 24	1 13	51 146	3 20	1	48 155	2 (
LEB_MCC_J2_Mar15	B1182 Nettleham Road S	В	MCC Turn	NB	Cal	83	3	2	110	6	1	107	10 (
LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15	B1182 Nettleham Road S B1182 Nettleham Road S	B	MCC_Turn MCC_Turn MCC_Turn	NB NB	Cal Cal	262 79	19 5	12 4	306 82	26 8	2	444 69	24 5 7 0
LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15 LEB_MCC_J2_Mar15	Searby Road Searby Road	UU	MCC_Turn MCC_Turn	EB EB	Cal Cal	45 22	3	1	125 38	5	2	119 43	8 (
LEB_MCC_J2_Mar15	Searby Road	U	MCC_Turn	EB	Cal	52	3	1	89	4	0	102	5
LEB_MCC_J3_Mar15 LEB_MCC_J3_Mar15	A15 Wragby Road E A15 Wragby Road E	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	479 278	50 16	29 10	333 199	51 19	18 11	200 198	24 23 18 14
LEB_MCC_J3_Mar15	A15 Wragby Road E	AB	MCC_Turn	WB	Cal	33 101	4	4	28	3	2	19	6 3
LEB_MCC_J3_Mar15 LEB_MCC_J3_Mar15	B1308 Outer Circle Drive B1308 Outer Circle Drive	В	MCC_Turn MCC_Turn	NB NB	Cal Cal	120	31	4 19	132 235	16 27	2	107 258	16
LEB_MCC_J3_Mar15 LEB_MCC_J3_Mar15	B1308 Outer Circle Drive A15 Wragby Road W	B A	MCC_Turn MCC_Turn	NB EB	Cal Cal	121 25	35 1	18 1	313 55	44 4	16 2	535 58	28 8 6 0
LEB_MCC_J3_Mar15	A15 Wragby Road W	A	MCC_Turn	EB	Cal	164	16	9	241	25	12	453	36
LEB_MCC_J3_Mar15 LEB_MCC_J3_Mar15	A15 Wragby Road W Outer Circle Drive N	A U	MCC_Turn MCC_Turn	EB SB	Cal Cal	118 8	12 0	6 1	177 18	18 2	3	157 52	17 2
LEB_MCC_J3_Mar15 LEB_MCC_J3_Mar15	Outer Circle Drive N Outer Circle Drive N	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	129 26	12	7	156 30	20 2	8	129 30	11 0
LEB_MCC_J4_Mar15	A15 Bunkers Hill E	A	MCC_Turn	WB	Cal	223	13	5	94	12	1	167	25
LEB_MCC_J4_Mar15 LEB_MCC_J4_Mar15	A15 Bunkers Hill E Hawthorn Road	A U	MCC_Turn MCC_Turn	WB NB	Cal Cal	494 76	50 4	39 0	400 83	57 9	28 2	291 106	35 30 10 8
LEB_MCC_J4_Mar15	Hawthorn Road	U	MCC_Turn	NB	Cal	122	7	2	74	8	2	105	8 8
LEB_MCC_J4_Mar15 LEB_MCC_J4_Mar15	A15 Bunkers Hill W A15 Bunkers Hill W	A	MCC_Turn MCC_Turn	EB EB	Cal Cal	218 90	52 3	28 2	409 94	56 8	27 2	758 163	48 9
LEB_MCC_J5_Mar15 LEB_MCC_J5_Mar15	A158 Wragby Road E A15 Bunkers Hill	A	MCC_Turn MCC_Turn	WB EB	Cal Cal	633 152	54 26	43 12	442 216	66 30	42 17	438 362	83 44 29 11
LEB_MCC_J5_Mar15	A15 Bunkers Hill	A	MCC_Turn	EB	Cal	182	34	17	260	34	11	490	29
LEB_MCC_J5_Mar15 LEB_MCC_J5_Mar15	A158 A158	A	MCC_Turn MCC_Turn	SB SB	Cal Cal	207 388	61 36	35 33	231 256	40 39	27 18	266 264	32 23 34 2
LEB_MCC_J5_Mar15	A158	A	MCC_Link	WB	Cal	482	50	44	431	67	48	605	86 44
LEB_MCC_J5_Mar15 LEB_MCC_J5_Mar15	A158 Wragby Road E A15 Bunkers Hill	A	MCC_Link MCC_Link	EB WB	Cal Cal	388 691	94 66	52 44	491 483	73 68	39 29	756 458	61 2 59 3
LEB_MCC_J6_Mar15 LEB_MCC_J6_Mar15	A158 Wragby Road E E A158 Wragby Road E E	A	MCC_Turn MCC_Turn	WB WB	Val Val	571 4	49 1	42 0	409 5	62 1	42	412 9	82 42
LEB_MCC_J6_Mar15	A158 Wragby Road E W	A	MCC_Turn	EB	Val	59	3	0	50	5	1	103	7 (
LEB_MCC_J6_Mar15 LEB_MCC_J6_Mar15	A158 Wragby Road E W Greetwell Lane	A U	MCC_Turn MCC_Turn	EB SB	Val Val	332 6	92 0	52 1	441 6	68 2	38 0	657 4	54 2 0 0
LEB_MCC_J6_Mar15	Greetwell Lane	U	MCC_Turn	SB	Val	61	8	0	32	3	0	29	0 0
LEB_MCC_J7_Mar15 LEB_MCC_J7_Mar15	A158 Wragby Road E E A158 Wragby Road E E	A	MCC_Turn MCC_Turn	WB WB	Cal Cal	552 104	46 5	42 1	389 39	59 6	41 1	405 95	82 4 ⁻ 6 (
LEB_MCC_J7_Mar15	A158 Wragby Road E W	A	MCC_Turn	EB	Cal	21	2	1	25	3	1	48	2 (

LEB_MCC_J7_Mar15	A158 Wragby Road E W	A	MCC_Turn	EB	Cal	337	90	52	410	65	37	597	49 27
LEB_MCC_J7_Mar15	Lodge Lane	U	MCC_Turn	SB	Cal	56	8	3	39	4	1	88	5 0
LEB_MCC_J7_Mar15 LEB_MCC_J8_Mar15	Lodge Lane A158 Wragby Road E E	U	MCC_Turn MCC_Turn	SB WB	Val	106	10	1	17 31	2	2	53	1 0
LEB_MCC_J8_Mar15 LEB_MCC_J8_Mar15	A158 Wragby Road E E Kennel Lane	A U	MCC_Turn MCC_Turn	WB NB	Val Val	543 113	42 9	38 3	375 53	55 8	3	398 101	81 41 8 2
LEB_MCC_J8_Mar15 LEB_MCC_J8_Mar15	Kennel Lane A158 Wragby Road E W	UA	MCC_Turn MCC_Turn	NB EB	Val Val	55 322	5 86	2 52	33 403	5 60		81 574	1 0 46 26
LEB_MCC_J8_Mar15 LEB_MCC_J9_Mar15	A158 Wragby Road E W Carlton Blvd	A U	MCC_Turn MCC_Turn	EB WB	Val Cal	70 344	10 23	4	48 210	8 18		105 154	7 2 9 0
LEB_MCC_J9_Mar15 LEB_MCC_J9_Mar15	Carlton Blvd B1308 Outer Circle Road S	UB	MCC_Turn MCC_Turn	WB NB	Cal Cal	171 175	18 62	6 26	277 385	14 63	1 22	266 540	10 0 35 14
LEB_MCC_J9_Mar15 LEB_MCC_J9_Mar15	B1308 Outer Circle Road S B1308 Outer Circle Road N	B	MCC_Turn MCC_Turn	NB SB	Cal Cal	93 90	6 4	4	210 98	14 10		225 156	9 5 10 3
LEB_MCC_J9_Mar15 LEB_MCC_J10_Mar15	B1308 Outer Circle Road N Hawthorn Road E	BU	MCC_Turn MCC Turn	SB WB	Cal Cal	548 117	68 8	36	414 50	70	25	268 43	44 27 5 0
LEB_MCC_J10_Mar15 LEB_MCC_J10_Mar15 LEB_MCC_J10_Mar15	Hawthorn Road E St Augustine Road	U U	MCC_Turn MCC Turn	WB NB	Cal	110 74	6	1	91 58	10	2	96 111	15 9 6 6
LEB_MCC_J10_Mar15 LEB_MCC_J10_Mar15 LEB_MCC_J10_Mar15	St Augustine Road Hawthorn Road W	U	MCC_Turn MCC_Turn	NB EB	Cal	59 116	3	0	59 114	3	0	106 179	3 0 25 5
LEB_MCC_J10_Mar15 LEB_MCC_J10_Mar15 LEB_MCC_J11_Mar15	Hawthorn Road W	U	MCC_Turn MCC_Turn	EB	Cal Val	232	9 11	3	64 59	7	1	115	10 2 5 3
LEB_MCC_J11_Mar15	Hawthorn Road E Hawthorn Road E	U	MCC_Turn	WB	Val	86	4	0	45	5	2	47	10 6
LEB_MCC_J11_Mar15 LEB_MCC_J11_Mar15	Croft Lane Croft Lane	UU	MCC_Turn MCC_Turn	NB NB	Val Val	109 94	9 10	0	90 63	6	3	96 131	10 3 7 2
LEB_MCC_J11_Mar15 LEB_MCC_J11_Mar15	Hawthorn Road W Hawthorn Road W	UUU	MCC_Turn MCC_Turn	EB EB	Val Val	69 147	6	2	55 102	4	1	70 162	10 2 20 2
LEB_MCC_J12_Mar15 LEB_MCC_J12_Mar15	High Street High Street	UU	MCC_Turn MCC_Turn	WB WB	Cal Cal	104 85	3 8	1	54 32	5	2	62 56	7 8
LEB_MCC_J12_Mar15 LEB_MCC_J12_Mar15	Hawthorn Road Hawthorn Road	UUU	MCC_Turn MCC_Turn	EB EB	Cal Cal	82 81	6 6	3	55 54	6 5	2	123 81	6 0 10 5
LEB_MCC_J12_Mar15 LEB_MCC_J12_Mar15	Kennel Lane Kennel Lane	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	47 132	12 8	3	35 43	6 4		87 73	8 2 2 0
LEB_MCC_J13_Mar15 LEB_MCC_J13_Mar15	Croft Lane Croft Lane	UUU	MCC_Turn MCC_Turn	SB SB	Cal Cal	170 131	8	1	68 63	8		77 62	16 2 5 3
LEB_MCC_J13_Mar15 LEB_MCC_J13_Mar15	Church Lane Church Lane	UU	MCC_Turn MCC_Turn	NB NB	Cal Cal	5 82	1 14	0	5 60	1	0	3 109	0 0 10 0
LEB_MCC_J13_Mar15 LEB_MCC_J13_Mar15	High Street High Street	U U	MCC_Turn MCC_Turn	EB	Cal	61 3	3	0	65 5	4	3	109	6 6 0 0
LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15	B1308 Outer Circle Road B1308 Outer Circle Road	B	MCC_Turn MCC Turn	SB SB	Cal	499 366	91 29	28 16	381 270	63 28	18	420 170	35 17 16 8
LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15	B1308 Greetwell Road E B1308 Greetwell Road E	B	MCC_Turn MCC Turn	SB WB	Cal	340 221	16 15	1	87 114	14		69 70	7 3
LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15	B1308 Allenby Road B1308 Allenby Road	B	MCC_Turn MCC_Turn	NB NB	Cal	199	39	15 4	282	48	17	430	33 15 14 3
LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15	B1308 Greetwell Road W B1308 Greetwell Road W	B	MCC_Turn MCC_Turn	EB	Cal	155	26 13	12	355 133	40		334 161	14 3 15 12 13 14
LEB_MCC_J14_Mar15	B1308 Outer Circle Road	В	MCC_Link MCC_Link	NB	Cal	356 92	68	25	604 207	83 24		728	42 26 31 12
LEB_MCC_J14_Mar15 LEB_MCC_J14_Mar15	B1308 Greetwell Road E B1308 Allenby Road	B	MCC_Link	EB SB	Cal Cal	852	102	32	427	77	23	394	38 24
LEB_MCC_J14_Mar15 LEB_MCC_J15_Mar15	B1308 Greetwell Road W Waterford Lane	BU	MCC_Link MCC_Turn	WB SB	Cal Val	587 6	41 0	24 1	357 4	38	11	275 1	28 15 0 0
LEB_MCC_J15_Mar15 LEB_MCC_J15_Mar15	Waterford Lane Fiskerton Road E	UU	MCC_Turn MCC_Turn	SB WB	Val Val	51 475	3 29	2	26 145	3 17	4	20 116	3 5 10 3
LEB_MCC_J15_Mar15 LEB_MCC_J15_Mar15	Fiskerton Road E Fiskerton Road W	UUU	MCC_Turn MCC_Turn	WB EB	Val Val	6 14	0	0	3 32	0	3	2 88	1 0 1 5
LEB_MCC_J15_Mar15 LEB_MCC_J16_Mar15	Fiskerton Road W Church Lane	UUU	MCC_Turn MCC_Turn	EB SB	Val Cal	76 18	22 2	9	167 21	20 2		417 29	30 6 1 2
LEB_MCC_J16_Mar15 LEB_MCC_J16_Mar15	Church Lane Fiskerton Road East	UU	MCC_Turn MCC_Turn	SB WB	Cal Cal	145 287	4 20	1	39 78	2		25 74	1 0 10 3
LEB_MCC_J16_Mar15 LEB_MCC_J16_Mar15	Fiskerton Road East Fiskerton Road	UU	MCC_Turn MCC_Turn	WB EB	Cal Cal	39 22	3 9	0	18 39	1	1	24 86	4 0 6 0
LEB_MCC_J16_Mar15 LEB_MCC_J17_Mar15	Fiskerton Road Ferry Road	UU	MCC_Turn MCC_Turn	EB WB	Cal Val	36 232	14 16	7	97 64	13 9		289 70	21 6 13 3
LEB_MCC_J17_Mar15 LEB_MCC_J17_Mar15	Ferry Road High Street	U U	MCC_Turn MCC_Turn	WB NB	Val Val	61 9	9 2	2	28 7	8	2	51 2	10 6 0 0
LEB_MCC_J17_Mar15 LEB_MCC_J17_Mar15	High Street Chapel Road	UU	MCC_Turn MCC Turn	NB EB	Val Val	26 41	8 10	5	80 29	12 5		188 80	10 8 10 6
LEB_MCC_J17_Mar15 LLPT_MCC_S1_May16	Chapel Road A46 Bypass N	U A	MCC_Turn MCC Turn	EB SB	Val Cal	7 614	0	1	5 584	0		10 862	0 0 92 83
LLPT_MCC_S1_May16 LLPT_MCC_S1_May16	A46 Bypass N A1434 Newark Road	A	MCC_Turn MCC_Turn	SB WB	Cal	164 778	31 99	14 60	168 470	18 79	14	260 597	24 9 60 24
LLPT_MCC_S1_May16 LLPT_MCC_S1_May16 LLPT_MCC_S1_May16	A46 Bypass W A46 Bypass W	A	MCC_Turn MCC_Turn	NB NB	Cal	15 1140	9 160	4	24 863	5 148	5	31 1299	7 3 170 107
LLPT_MCC_S1_May16 LLPT_MCC_S1_May16 LLPT_MCC_S1_May16	Middle Lane	U U	MCC_Turn MCC_Turn	EB	Cal	33	9	8	28	4	4	34	9 5 13 3
LLPT_MCC_S1_May16 LLPT_MCC_S1_May16 LLPT_MCC_S1_May16	A46 Bypass N A1434 Newark Road	A	MCC_Link MCC_Link	NB EB	Cal	1113 537	139	144 76	692 593	124	119	967	144 102 95 29
LLPT_MCC_S1_May16	A46 Bypass W Middle Lane	A A U	MCC_Link	SB	Cal	1016	212	159	854 93	152	140	1204 117	120 98
LLPT_MCC_S1_May16 LLPT_MCC_S2_May16	A46 Bypass N A46 Bypass N	A	MCC_Link MCC_Turn	SB	Cal Val	156 318	29 31	6 15	105	13 34	15	127	26 14
LLPT_MCC_S2_May16 LLPT_MCC_S2_May16	Whisby Road E	A U	MCC_Turn MCC_Turn	SB WB	Val Val	736	135 49	130 17	648 144	101 25	13	902 321	106 86 17 5
LLPT_MCC_S2_May16 LLPT_MCC_S2_May16	Whisby Road E A46 Bypass S	U A	MCC_Turn MCC_Turn	WB NB	Val Val	125 5	37 0	20 5	187 12	29 2	4	391 5	26 4 1 1
LLPT_MCC_S2_May16 LLPT_MCC_S2_May16	A46 Bypass S Whisby Road W	A U	MCC_Turn MCC_Turn	NB EB	Val Val	1138 68	137 8	148 17	698 56	125 5	9	998 56	130 87 9 1
LLPT_MCC_S2_May16 LLPT_MCC_S2_May16	Whisby Road W A46 Bypass S	U A	MCC_Turn MCC_Link	EB SB	Val Val	155 824	12 176	5 141	62 779	13 122	122	62 1155	5 1 108 90
LLPT_MCC_S2_May16 LLPT_MCC_S2_May16	Whisby Road W A46 Bypass N	UA	MCC_Link MCC_Turn	WB SB	Val Val	78 318	12 31	17 15	107 105	16 34	15	256 127	28 5 26 14
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	A46 Bypass N A46 Bypass N	A A	MCC_Turn MCC_Turn	SB SB	Cal Cal	320 799	30 124	17 123	152 604	26 111	104	161 831	32 16 107 91
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	B1190 Doddington Road B1190 Doddington Road	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	188 367	23 64	10 26	127 354	14 29		165 662	22 6 46 7
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	A46 Bypass S A46 Bypass S	A	MCC_Turn MCC_Turn	NB NB	Cal Cal	50 912	9 152	17 145	53 724	9 118		88 1069	11 3 132 81
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	B1190 Lincoln Road B1190 Lincoln Road	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	7 312	2 44	1 27	18 171	1 35	1 18	11 200	2 2 37 4
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	A46 Bypass N B1190 Doddington Road	A B	MCC_Link MCC_Link	NB EB	Cal Cal	947 708	174 75	154 37	802 414	126 72	116 32	1202 590	126 83 90 21
LLPT_MCC_S3_May16 LLPT_MCC_S3_May16 LLPT_MCC_S3_May16	A46 Bypass S B1190 Lincoln Road	A	MCC_Link MCC_Link	SB WB	Cal	1072	160 38	148 27	764	133 34	124 15	1028 367	138 100 34 6
LLPT_MCC_S3_May16 LLPT_MCC_S4_May16 LLPT_MCC_S4_May16	A46 Bypass N A46 Bypass N	A	MCC_Turn MCC_Turn MCC_Turn	SB SB	Val	159	28 151	6 140	207	27	6	361 1047	34 0 38 5 146 106
LLPT_MCC_S4_May16 LLPT_MCC_S4_May16 LLPT_MCC_S4_May16	A46 Bypass N B1378 Skellingthorpe Road B1378 Skellingthorpe Road	B	MCC_Turn	WB WB	Val Val Val	43 392	151 11 37	3	758 51 300	139 6 44	2	1047 45 367	146 106 5 0 49 8
LLPT_MCC_S4_May16	A46 Bypass S	A	MCC_Turn MCC_Turn	NB	Val	26	2	8	34	5	5	34	2 3
LLPT_MCC_S4_May16 LLPT_MCC_S4_May16	A46 Bypass S Lincoln Road	A U	MCC_Turn MCC_Turn	NB EB	Val Val	940 124	186 14	151	775 77	133 13	4	1182 74	131 80 15 1
LLPT_MCC_S4_May16 LLPT_MCC_S4_May16	Lincoln Road B1378 Skellingthorpe Road	UB	MCC_Turn MCC_Link	EB EB	Val Val	157 304	14 42	7	144 341	18 44	10	150 528	26 10 64 13
LLPT_MCC_S4_May16 LLPT_MCC_S4_May16	A46 Bypass S Lincoln Road	A U	MCC_Link MCC_Link	SB WB	Val Val	1082 184	157 26	144 8	775 213	137 33	122 11	991 300	140 108 30 10
LLPT_MCC_S5_May16 LLPT_MCC_S5_May16	A57 Saxilby Road N A57 Saxilby Road N	A A	MCC_Turn MCC_Turn	EB EB	Cal Cal	112 410	15 44	21 26	131 311	25 48	26	191 449	17 12 42 12
LLPT_MCC_S5_May16 LLPT_MCC_S5_May16	A46 Bypass E A46 Bypass E	A A	MCC_Turn MCC_Turn	SB SB	Cal Cal	72 929	10 137	5 128	58 800	12 132	122	72 1059	6 7 160 108
LLPT_MCC_S5_May16	A57 Saxilby Road S	A	MCC_Turn	WB	Cal	194	31	17	183	27		288	16 8

LLPT_MCC_S5_May16 LLPT_MCC_S5_May16 LLPT_MCC_S5_May16	A57 Saxilby Road S A46 Bypass W	A A A	MCC_Turn MCC_Turn MCC Turn	WB NB NB	Cal Cal Cal	221 102 1251	33 15 217	29 12 140	218 118 901	31 17 153	18 7 115	310 171 1278	19 16 165	8 4 81
LLPT_MCC_S5_May16 LLPT_MCC_S5_May16 LLPT_MCC_S5_May16	A46 Bypass W A57 Saxilby Road N A57 Saxilby Road S	A A A	MCC_Turn MCC_Turn MCC Turn	WB EB	Cal Cal	377	47	49	427 414	63 62	38	606 482	56 54	24
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	A15 A15	A A	MCC_Turn MCC_Turn	SB SB	Val Val	75 447	16 65	11 105	69 328	9 68	15 91	77 420	5 84	13 87
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	A46 Bypass E A46 Bypass E	A	MCC_Turn MCC_Turn	WB WB	Val Val	72 609	10 85	2 67	65 541	5 95	2 63	50 641	4 93	1 45
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	B1226 Riseholme Road B1226 Riseholme Road	B	MCC_Turn MCC_Turn	NB NB	Val Val	188 280	31 43	4	209 213	19 37	8	292 309	23 43	9
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	A46 Bypass W A46 Bypass W A15	A A A	MCC_Turn MCC_Turn MCC_Link	EB EB NB	Val Val Val	168 941 403	48 149 84	76 70 108	160 728 378	33 125 69	63 54 87	216 1094 534	37 93 83	45 48 60
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	A46 Bypass E B1226 Riseholme Road	A	MCC_Link MCC_Link	EB	Val Val	725	156 56	76	637 437	109 63	63 23	844 612	101 70	50 23
LLPT_MCC_S6_May16 LLPT_MCC_S6_May16 LLPT_MCC_S6_May16	A46 Bypass W A46 Bypass W	A A	MCC_Link MCC_Link	EB WB	Cal Val	1092 990	197 148	146 136	881 859	156 149	116	1310 1120	160 162	90 117
WGC_MCC_J9_Jul16 WGC_MCC_J9_Jul16	B1378 Skellingthorpe Road S B1378 Skellingthorpe Road S	B	MCC_Turn MCC_Turn	WB WB	Cal Cal	186 115	30 29	13 10	209 181	33 21	9	274 199	31 19	11 3
WGC_MCC_J9_Jul16 WGC_MCC_J9_Jul16	Birchwood Avenue Birchwood Avenue	UUU	MCC_Turn MCC_Turn	NB NB	Cal Cal	136 200	13 27	2 13	149 189	22 22	5 11	131 202	18 25	1 9
WGC_MCC_J9_Jul16 WGC_MCC_J9_Jul16	B1378 Skellingthorpe Road N B1378 Skellingthorpe Road N	B	MCC_Turn MCC_Turn	EB EB	Cal Cal	141 161	22 20	10 9	163 187	27 45	7	194 238	38 29	7
WGC_MCC_J10_Jul16 WGC_MCC_J10_Jul16 WGC_MCC_J10_Jul16	Pershore Way Pershore Way B1190 Doddington Road E	U U B	MCC_Turn MCC_Turn MCC_Turn	SB SB WB	Cal Cal Cal	78 264 310	14 22 43	8 1 34	92 116 104	10 18 21	6 2 8	72 125 371	9 8 32	3 2 11
WGC_MCC_J10_Jul16 WGC_MCC_J10_Jul16	B1190 Doddington Road E B1190 Doddington Road W	B	MCC_Turn MCC_Turn	WB EB	Cal	57	14	8	269 143	50 39	25	153 307	21 45	8
WGC_MCC_J10_Jul16 WGC_MCC_J11_Jul16	Bi190 Doddington Road W Birchwood Avenue E	BU	MCC_Turn MCC_Turn	EB	Cal Val	253 375	45 32	28 10	230 218	48	23	207 201	35	8
WGC_MCC_J11_Jul16 WGC_MCC_J11_Jul16	Birchwood Avenue E B1190 Doddington Road E	UB	MCC_Turn MCC_Turn	SB WB	Val Val	58 377	6 63	2 40	20 357	3 65	1	27 382	5 41	0 15
WGC_MCC_J11_Jul16 WGC_MCC_J11_Jul16	B1190 Doddington Road E B1190 Doddington Road W	B	MCC_Turn MCC_Turn	WB EB	Val Val	126 10	23 4	11 2	220 26	26 6	7	297 46	39 8	2
WGC_MCC_J11_Jul16 MIDRTM_MCC_2177_Mar15	B1190 Doddington Road W A158	BA	MCC_Turn MCC_Link	EB	Val Val	256 333	52 120	33 58	333 376	63 78	30 42	328 479	38 77	12 20
MIDRTM_MCC_4581_Mar15 MIDRTM_ATC_5427_Mar15	A158 A113	A A	MCC_Link ATC	WB SB	Val Cal	456 130	80 25	38 12	332 88	77	45 8	371 93	88 18	29 8
MIDRTM_ATC_5426_Mar15 MIDRTM_ATC_2516_Mar15 MIDDTM_ATC_2572_Mar15	A113 A1133	A	ATC ATC	NB SB	Cal Cal	100 266	19 51 31	9 24	91 210	18 40	8 19	141 210 296	27 40	13 19 27
MIDRTM_ATC_2573_Mar15 MIDRTM_ATC_1660_Mar15 MIDRTM_ATC_1693_Mar15	A1133 A1500 A1500	A A A	ATC ATC ATC	NB WB EB	Cal Val Val	162 116 150	22 29	15 10 13	200 101 92	38 19 18	18 9 8	142 117	57 27 23	13
MIDRTM_ATC_035_Mar15 MIDRTM_ATC_2561_Mar15 MIDRTM_ATC_1432_Mar15	A17 A17	A	ATC ATC	EB	Cal	511	98 99	46	491 557	95 107	44	566 533	109	51 48
MIDRTM_ATC_5554_Mar15 MIDRTM_ATC_5555_Mar15	A46 A46	A	ATC ATC	NB SB	Cal	276 209	53 40	25 19	173	33 34	16 16	204 272	39 52	18
MIDRTM_ATC_6894_Mar15 MIDRTM_ATC_6895_Mar15	A1 A1	A A	ATC ATC	NB SB	Cal Cal	898 1056	180 211	205 241	994 948	199 190	227 217	1119 996	224 199	256 228
MIDRTM_ATC_2174_Mar15 MIDRTM_ATC_1803_Mar15	B1190 B1190	BB	ATC ATC	WB EB	Val Val	86 72	15 12	3	75 71	13 12	3	81 78	14 13	3
MIDRTM_ATC_2279_Mar15 MIDRTM_ATC_2276_Mar15	BRIDGE ROAD BRIDGE ROAD	UU	ATC ATC	NB SB	Cal Cal	221 173	47 37	8	138 136	29 29	5	184 239	39 51	7
MIDRTM_ATC_2255_Mar15 MIDRTM_ATC_2261_Mar15	SWINDERBY ROAD STAPLEFORD LANE TAPLEFORD LANE	UU	ATC ATC	EB SB	Val Cal	5 68	1	0	8 36	2	0	10 33	2	0
MIDRTM_ATC_2564_Mar15 DfTMAJ_MCC_7742_Sep2015 DfTMAJ_MCC_7742_Sep2015	STAPLEFORD LANE A6075 A6075	U A A	ATC MCC_Link MCC_Link	NB EB WB	Cal Cal Cal	29 137 136	6 12 15	1 12 17	43 75 64	9 15 13	2 11 11	67 147 160	14 18 27	3
DfTMAJ_MCC_18614_Jun2013 DfTMAJ_MCC_18614_Jun2013	A17 A17	A	MCC_Link MCC_Link MCC_Link	EB WB	Cal	346	80 53	106 84	353 344	47	87 106	364	49 74	77 65
DfTMAJ_MCC_27398_Apr2015 DfTMAJ_MCC_27398_Apr2015	A631 A631	A	MCC_Link MCC_Link	EB	Cal	105 133	47	29 28	190 138	34 33	21	343 147	41 35	10
DfTMAJ_MCC_38473_Sep2013 DfTMAJ_MCC_38473_Sep2013	A46 A46	A A	MCC_Link MCC_Link	EB WB	Cal Cal	276 382	107 85	31 34	235 249	60 65	27 31	454 374	78 65	24 16
DfTMAJ_MCC_70299_Jun2015 DfTMAJ_MCC_70299_Jun2015	A6075 A6075	A A	MCC_Link MCC_Link	NB SB	Val Val	103 107	29 22	10 23	76 80	27 27	10 18	131 172	23 28	8 10
DfTMAJ_MCC_77389_Jun2015 DfTMAJ_MCC_77389_Jun2015	A1434 A1434	A	MCC_Link MCC_Link	EB WB	Val Val	302 608	78 89	29 27	384 392	65 60	23 30	636 517	82 38	13 11
DfTMIN_MCC_940400_Oct2015 DfTMIN_MCC_940400_Oct2015	B1188 B1188	B	MCC_Link MCC_Link	NB SB	Cal Cal	112 159	25 28	11 10	87 85	20 20	7	166 143	20 12	2
DfTMIN_MCC_940464_Mar2015 DfTMIN_MCC_940464_Mar2015	Lincoln Road Lincoln Road	UU	MCC_Link MCC_Link	NB SB	Val Val	103 112 237	23 18 46	10 7 21	41 42 190	11 14 36	13 13 17	139 112 330	24 9 63	12 10
LincsLab_ATC_228_2016 LincsLab_ATC_228_2016 LEB_ATC_EW2_Jun2014	A607 Boothby Graffoe A607 Boothby Graffoe Hawthorn Road	A A U	ATC ATC ATC	SB NB EB	Cal Cal Val	237 291 195	46 56 19	21 26 17	204 166	30 39 14	17	330 315 299	61 25	30 28 18
LEB_ATC_EW2_Jun2014 LEB_ATC_NS2_Jun14	Hawthorn Road B1273 Brayford Way	UB	ATC ATC	WB NB	Val Cal	183 837	15 138	15 64	137 907	13	11 54	149 1145	15 83	11
LEB_ATC_NS2_Jun14 LEB_ATC_2.3_Nov2015	B1273 Brayford Way Heighington Road	BU	ATC ATC	SB WB	Cal	930 196	122 14	60 5	831 74	107	47	996 72	96 6	34
LEB_ATC_2.3_Nov2015 LEB_ATC_2.4_Nov2015	Heighington Road B1190 Washingborough Road	UB	ATC ATC	EB WB	Cal Cal	79 331	22 37	5 19	132 196	22 27	7 22	218 158	44 26	4 14
LEB_ATC_2.4_Nov2015 LEB_ATC_7.2_Nov15	B1190 Washingborough Road Wolsley Way	BU	ATC ATC	EB WB	Cal Cal	83 202	28 22	22 6	156 124	27 17	16 6	244 139	33 15	9 1
LEB_ATC_7.2_Nov15 LEB_ATC_7.3_Nov15	Wolsley Way Outer Circle Drive Outer Circle Drive	UUU	ATC ATC	EB SB	Cal Val	122 246	17 41	15 19	149 234	16 30	10	254 246	28 22	7
LEB_ATC_7.3_Nov15 LEB_ATC_7.4_Nov15 LEB_ATC_7.4_Nov15	Oval Approach Oval Approach	U U U	ATC ATC ATC	NB WB EB	Val Cal Cal	256 47 28	40 5 4	34 2 2	341 30 26	38 2 3	19 3	375 31 33	30 3 3	9
LEB_ATC_7.6_Nov15 LEB_ATC_7.6_Nov15	Byron Avenue	UU	ATC ATC	WB EB	Cal	20	2	2	10	1	0	8	2	0
LEB_ATC_7.16_Nov15 LEB_ATC_7.16_Nov15	B1190 Washingborough Road B1190 Washingborough Road	B	ATC ATC	WB EB	Cal	310 102	49 27	32 25	246 194	31 29	27 23	177 257	28	17 11
TPS_ATC_210_Nov15 TPS_ATC_210_Nov15	B1241 Sturton Road B1241 Sturton Road	B	ATC ATC	NB SB	Cal	150 166	21 15	3	90 98	14	2	178 161	11	0
TPS_ATC_209_Nov15 TPS_ATC_209_Nov15	A156 Lincoln Road A156 Lincoln Road	A A	ATC ATC	NB SB	Cal Cal	158 133	24 16	5 2	148 159	21 16	5 4	231 167	14 9	1
TPS_ATC_11428074_Mar15 TPS_ATC_11428074_Mar15	A57 Dunham Road A57 Dunham Road	A A	ATC ATC	EB WB	Cal Cal	306 300	59 58	27 27	244 243	47 47	22 22	369 341	71 66	33 31
TPS_ATC_449_Mar15 TPS_ATC_449_Mar15	B1164 B1164	B	ATC ATC	NB SB	Cal Cal	58 50	12 11	2	46 45	10 10	2	76 67	16 14	3
WGC_ATC_S'thorpeRd_Jul16 WGC_ATC_S'thorpeRd_Jul16 TRAD_ATC_30015904_7073/1_2016	Skellingthorpe Road Skellingthorpe Road A46 porthbound between A1133 and A1434	B B	ATC ATC ATC	EB WB NB	Cal Cal Val	382 242 1123	64 41 164	14 9 172	359 375 889	61 63 153	13 14 140	363 471 1391	61 79 185	13 17 115
TRAD_ATC_30015905_7074/1_2016	A46 northbound between A1133 and A1434 A46 southbound between A1434 and A1133 A46 northbound between B1378 and A57	A A A	ATC ATC ATC	SB NB	Val Val Val	1123 1077 1327	224 228	172 168 149	889 888 991	153 158 168	140 146 119	1215 1432	185 121 179	99 84
TRAD_ATC_30013948_8004/1_2016	A46 southbound between A57 and B1378 A46 southbound between A57 and B1378 A46 northbound between A1133 and A1434	A	ATC ATC ATC	SB	Val Val	1129	180 187	149 147 87	971 866	185	139	1336	189	115 122
TRAD_ATC_30013944_8005/1_2015	A46 southbound between A1434 and A1133 A46 southbound between A1434 and A1133	A	ATC ATC ATC	SB	Val Val Cal	1071 958	206	96 59	920 818	177	83 50	1076	202 207 167	97
TRAD_ATC_30013558_6550/2_2016 TRAD_ATC_30013534_6532/1_2016	A46 southbound between A1 and A617 A1 southbound between A57/A614 and B6387	A	ATC ATC	SB SB	Cal Cal	910 1135	157 227	56 259	862 1163	149 233	53 266	1017 1267	176 253	63 290
TRAD_ATC_30013533_6533/1_2016 TRAD_ATC_30013532_6531/1_2013	A1 northbound between B6387 and A57/A614 A1 southbound exit for A6075	A A	ATC ATC	NB SB	Cal Cal	1175 65	235 13	269 6	1219 46	244 9	279 4	1368 64	274 12	313 6
	A1 southbound within the B6325 junction	A	ATC ATC	NB SB	Cal Cal	80 1051	15 210	7 240	50 1022	10 204	4 234	75 1117	14 223	7 255
TRAD_ATC_30013528_6529/1_2016 TRAD_ATC_30013526_6528/1_2016	A1 northbound exit for B6325	A	ATC ATC	SB NB	Cal Cal	214 141	41 27	19 13	126 86	24 16	11 8	191 158	37 30	17
THAD_ATG_30013525_6528/2_2016	A1 northbound within the B6325 junction	A	ATC	NB	Cal	938	188	214	1087	217	248	1177	235	269

		470		0.1	545	00	00	100	70	05	544	00	
TRAD_ATC_30013524_6527/1_2016 A1 northbound exit for A46	A	ATC	NB	Cal	515	89	32	403	70	25	511	88	32
TRAD_ATC_30013523_6527/2_2016 A1 northbound within the A46 junction	A	ATC	NB	Cal	782	156	179	849	170	194	965	193	220
TRAD_ATC_30013522_6526/1_2016 A1 southbound exit for A46	A	ATC	SB	Cal	463	80	29	342	59	21	392	68	24
TRAD_ATC_30013521_6526/2_2016 A1 southbound within the A46 junction	A	ATC	SB	Cal	816	163	186	768	154	176	895	179	205
TRAD_ATC_30013520_6525/1_2016 A1 southbound exit for B6326	A	ATC	SB	Cal	145	28	13	106	20	10	269	52	24
TRAD_ATC_30013519_6525/2_2016 A1 southbound within the B6326 junction	A	ATC	SB	Cal	948	190	217	876	175	200	964	193	220
TRAD_ATC_30013518_6524/1_2016 A1 northbound exit for B6326	A	ATC	NB	Cal	118	23	11	96	19	9	193	37	17
TRAD_ATC_30013517_6524/2_2016 A1 northbound within the B6326 junction	A	ATC	NB	Cal	888	178	203	981	196	224	1133	227	259
TRAD_ATC_30013516_6523/1_2014 A1 southbound between B6326 and B1174 near Grantham (north)	A	ATC	SB	Cal	1220	244	279	1027	205	235	1154	231	264
TRAD_ATC_30013515_6522/1_2016 A1 northbound between A52 and B1174 near Grantham (north)	A	ATC	NB	Cal	1074	215	245	1154	231	264	1331	266	304
TRAD_ATC_9778_30360804_2016 CROMWELL	A	ATC	NB	Val	1110	222	254	1189	238	272	1380	276	315
TRAD_ATC_30360803_9777_2016 CROMWELL	A	ATC	SB	Val	1205	241	275	1088	218	249	1250	250	286
TRAD_ATC_30360794_9714_2016 Shirebridge	A	ATC	NB	Val	1086	217	248	1162	232	266	1443	289	330
TRAD_ATC_30360764_2062_2016 Winthorpe (South of A1133)	A	ATC	NB	Cal	1136	218	102	1036	199	93	1533	295	138
TRAD_ATC_30361627_2063_2016 Winthorpe (South of A1133)	A	ATC	SB	Cal	1328	255	119	1034	199	93	1195	230	107
TRAD_ATC_30013505_2016 A1	A	ATC	NB	Cal	1097	219	251	1261	252	288	1418	284	324
LEB_ATC_01_2006 A156	A	ATC	NB	Cal	421	52	13	265	44	13	451	44	8
LEB_ATC_01_2006 A156	A	ATC	SB	Cal	356	37	23	267	34	15	376	25	8
LEB_ATC_30_2006 B1190	В	ATC	EB	Cal	134	24	5	89	12	5	176	14	2
LEB_ATC_30_2006 B1190	В	ATC	WB	Cal	166	19	4	84	14	3	155	17	1
LEB_ATC_31_2006 B1191	В	ATC	EB	Cal	167	24	6	111	13	3	168	11	3
LEB_ATC_31_2006 B1191	В	ATC	WB	Cal	149	14	1	111	15	2	179	15	1

1 Verification of Mobile Network Data

Project:	Greater Lincoln Transport Model	Date:	10/03/2017
Project.	Greater Lincoln Transport Moder	TN Ref:	TN/01
Subject:	Verification of Mobile Network Data		
Author:	Ben Patey	Ducie et Defi	4070404
Reviewed: Paul Smith	Project Ref:	1073461	

1.1 Introduction

Mouchel has been commissioned by Lincolnshire County Council (LCC) to develop the Greater Lincoln Transport Model (GLTM). A requirement of this process is to develop base year matrices for the SATURN highway assignment model. Citilogik were appointed to derive origin destination (OD) matrices from Mobile Network Data (MND) supplied by Vodafone.

This technical note summarises the outcomes of the verification checks undertaken by Mouchel on the MND data, including:

- Range and Logic Checks;
- Anonymisation Checks;
- Trip Rate Checks;
- Trip Purpose and Direction Checks;
- Trip Length Distribution Checks; and
- Mode of Travel Checks.

The final section contains a reference note around the use of TEMPRO v7 data in this technical note against the recent release of TEMPRO v7.2.

Attached to this technical note are two appendices, supplied with the data by Citilogik:

- Appendix A: Lincolnshire MND Project Methodology Note; and
- Appendix B: Lincolnshire MND Project Verification Note.

These two documents describe in greater detail the technical details and assumptions used to generate the MND matrices which are alluded to in this note.

1.2 MND Data Definitions

The following definitions, summarised from Appendix A, are used in this note.

• Vodafone customers communicate their positions with the networks of Vodafone **cells**.

- Each of these communications is referred to as an **event**.
- Vodafone replaces the customer details recorded in the event with an encrypted ID, known as the **device ID**. This allows movements of mobile devices to be tracked in a way that is not compromised.
- The time between consecutive events being registered for a particular device are registered by the same cell is called the **dwell time**.
- A **trip** for a mobile device user is defined from the time of the last event registered in the starting dwell cell until the time of the first event registered in the finishing dwell cell.
- If a dwell exceeds a 30 minute threshold, the device is deemed to be **static**. Therefore, a **static** trip is recorded by a mobile device not moving for over 30 minutes within the coverage area of a single cell.
- A cut off speed of 5km/hr was used to classify **motorised** and **slow** mode trips.
- **Rail** trips were extracted from the motorised category by comparing the observed journey path of an MND trip to predefined sequence which resemble rail routes.

1.3 MND Period

The mobile phone data was collected over a four week period split into two segments, to avoid a school half-term week, from 03/10/2016 to 16/10/2016 and from 14/11/2016 to 20/11/2016. There was a network technical fault that corrupted the data on one of the Sundays therefore the trips were recorded for 20 weekdays, 4 Saturdays and 3 Sundays.

1.4 MND Zone Types

Mouchel supplied Citilogik with a zone system in which to receive the processed MND data. This consisted of 524 zones, which a spacial geography of:

- LSOA within Lincoln district, plus the towns within the study area;
- MSOA for the remainder of the study area; and
- District and aggregations thereof outside of the study area based on route choice and proximity to the study area.

The study area was defined by eleven districts:

- The seven districts within Lincolnshire, namely Lincoln, Boston, East Lindsey, North Kesteven, South Holland, South Kesteven and West Lindsey;
- Bassetlaw and Newark and Sherwood in Nottinghamshire; and
- North East Lincolnshire and North Lincolnshire in Humberside.

The mobile phone raw events available for this project were available for all zones within the Geofence. This is a rectangular area drawn around the study area which includes a buffer region of external zones adjacent to the study area boundaries. Only

trips relating to the study area, i.e. trips from, to and traversing the study area are including in the matrix. Therefore:

- Trips for external zones within or overlapping the Geofence are only included if they interact with the study area; and
- Trips for external zones wholly outside the Geofence are only included if they interact with the study area, but they are allocated to the zone where they crossed the Geofence not the actual origin or destination.

For brevity, external zones within the Geofence will, for this note, be referred to herein as Geofence zones; this definition does not include the study area zones. The external zones outside of the Geofence will simply be referred to as external zones.

For this reason, the analysis presented in this note is based only trips which start and/or end within the study area. The Geofence zones only have partial coverage therefore including them in comparisons with independent datasets such as TEMPRO would not be direct comparison, especially for magnitudes and trip rates.

The zone system definitions are presented in Figure 1-1 below.

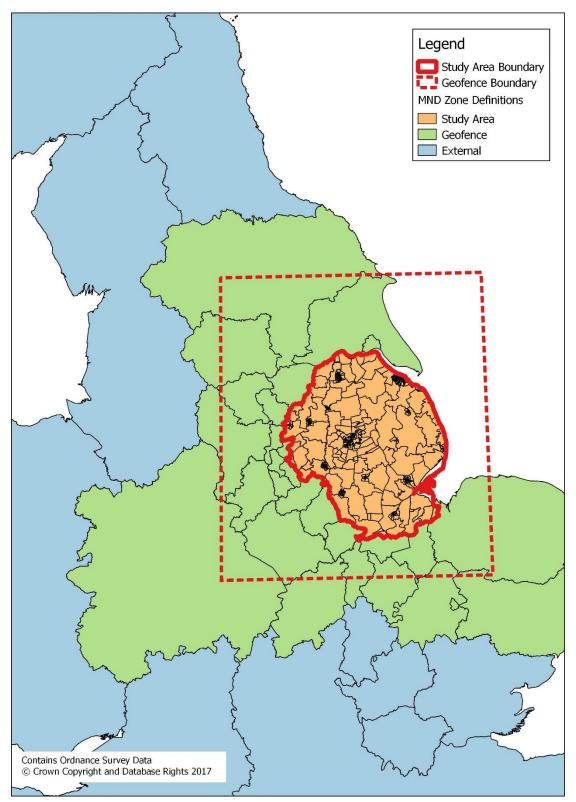
1.5 MND Devices and Expansion

The sample collected will only cover the subset of the population who use Vodafone devices. This is estimated at around a 24% share of the UK mobile market¹. A subset of Vodafone devices are not tracked as part of the data collection process. Those excluded include roamers, minors, data only devices (e.g. tablets) and some public sector devices.

The sample is expanded by Citilogik to the population at the zone level, in a process which takes into account mobile phone penetration and local market share. This process is summarised in more detail in Section 9 of Appendix A.

1.6 Report Keys

The MND data was supplied with five variables, using the following indexing system.


- Mode
 - 0 = Rail
 - \circ 1 = Motorised
 - \circ 2 = Static
 - \circ 3 = Other/Slow

¹ https://www.statista.com/statistics/261003/vodafones-market-share-by-country/

- Period
 - 0 = AM (07:00-09:59)
 - 1 = IP (10:00-15:59)
 - 2 = PM (16:00-18:59)
 - 3 = OVERNIGHT
- Day Classification
 - \circ 1 = Weekday
 - \circ 2 = Saturday
 - 3 = Sunday
- Purpose
 - 1 = Home Based Work
 - 2 = Home Based Other
 - 3 = Non-Home Based Work
 - 4 = Non-Home Based Other
 - o 5 = Unknown
- Home Direction
 - \circ 1 = From Home
 - \circ 2 = To Home
 - 3 = Non-Home Based

Figure 1-1 MND Zone System Definitions

2 Citilogik Verification Checks

2.1 Summary

The first verifications of the MND data were carried out by Citilogik prior to anonymisation. These verifications are to demonstrate that the processes implemented by Citilogik have been applied correctly and to flag any deficiencies, should they occur, owing to limitations in the algorithms, so that Mouchel can address these as part of the transport model prior matrix development.

These checks are documented in full in Appendix B. Citilogik summarise that:

"The mobile phone travel demand matrices produced for Lincolnshire are in line with outputs from other MND studies, and whilst showing differences against other datasets, these are not considered to be the result of incorrect processing of the MND."

The verification tests were carried out for the study area only, since trips for zones in the Geofence are only partially observed where they interact with the study area. The tests also exclude the static since "they do not interact with the transport network". The main checks which were carried out were:

- Comparisons of the device trip rates against NTS. The device trip rate is 3.16 trips per working day compared to NTS national reporting of 2.5 trips per average day (hence including weekends);
- Symmetry checks for origins vs destinations and 'from home' vs 'to home' for different subsets of mode, which showed strong correlation for each;
- Logic checks on the proportion of daily flow by time period for different combinations of direction and purpose to confirm the flow patterns by time period are in line with expected patterns; and
- Correlation plots between against population for different subsets of the trip matrix.

The limitations reported by Citilogik are as follows:

• There is an underrepresentation of home based trips, identified through comparison with NTS data.

This can be caused in MND data processing if an event is not triggered with the inferred home cell at the home end of the trip. To try and alleviate this, a 1.5km catchment area

around the inferred home cell was defined, and any trip ending within the catchment area classified as home based.

• Specifically, there is a shortfall in home based work trips, however a certain proportion of these will be included within the home based other category.

The shortfall in work trips can be caused for in MND processing if a usual work location cannot be inferred, due to varying work patterns and locations.

• There is an overrepresentation of rail trips in the MND, with 6.5% mode share, compared to NTS national reporting, which gives a 3% mode share for rail.

This is a result of short range trips being assigned to rail as the result of the cell to cell routeing following rail routes. The rail allocation algorithm is applied after trips have been categorised as motorised, so the excess rail trips should be highway motorised.

Mouchel has proceeded to carry out further verification checks on the data to investigate these issues, plus the impact of anonymisation. These are documented in the following chapters.

Greater Lincoln Transport Model

Verification of Mobile Network Data

3 Range and Logic Checks

3.1 Logic Checks

The permutations of purpose, direction and mode were checked to assure that the outcomes were logical, and to understand the relationships between the less descriptive elements including the unknown mode trips and static trips.

The numbers in the tables below refer to those listed in the report keys in Section 1.6.

Purpose and Direction Combinations

As expected, the home-based and non-home based components of purpose and direction match. All unknown purpose trips are classified as non-home based.

Table 3-1 Purpose and Direction Combinations within the MND Dataset

Purpose	Direction
1	1
1	2
2	1
2	2
3	3
4	3
5	3

Mode and Purpose Combinations

All of the unknown purpose trips are static, however, the converse is not true. Some of the static trips are home based other.

Mode	Purpose	Mode	Purpose
0	1	2	2
0	2	2	3
0	3	2	4
0	4	2	5
1	1	3	1
1	2	3	2
1	3	3	3
1	4	3	4

Mode and Direction Combinations

None of the static trips are from home, but some are to home. Combining this with the table above, we see that the static trips are either unknown or to home other.

Mode	Direction	Mode	Direction
0	1	2	2
0	2	2	3
0	3	3	1
1	1	3	2
1	2	3	3
1	3		

 Table 3-3 Mode and Direction Combinations within the MND Dataset

3.2 Range Checks

In the zone system supplied to Citilogik, the 524 zones are classified as follows:

- 487 study area zones;
- 27 Geofence zones; and
- 10 external zones.

Since the trips to/from external zones are allocated to a Geofence zone instead, the potential matrix size is $514^2 = 264,196$ cells.

When all modes, time periods, day types, purposes and directions are included, the number of OD pairs with non-zero trips is 137,640 (52%).

Restricted to weekdays only, but with all other combinations included, the number of non-zero OD pairs is 130,731 (49%). The results for this broken down by time period are summarised in Table 3-4.

Time Period	AM	IP	PM	ON
OD Pairs with Trips	88,408	103,315	83,878	85,228
% of Matrix Non-Zero	33%	39%	32%	32%

3.3 Area Compression

The proportions of the total matrix by high level areas are presented in Table 3-5. This gives a high level indication of the magnitude of interaction between Lincoln, the rest of Lincolnshire and the Geofence region. Since, at this stage, the composition of the static trips is unknown, they are excluded from the table. Further, since the trips for

external zones have been allocated to Geofence zones, see Section 1-4, these have been aggregated into a single category for this table. The zone definitions were presented in Figure 1-1.

From this table, we see that within the MND matrix:

- 69.7% of the trips are intra-study area (i.e. indexes 1 and 2 combined);
- 20.1% of the trips are between the study area and the Geofence/external region; and
- 10.2% of the trips are 'through' trips between two Geofence/external zones.

We can also summarise that, for Lincoln district:

- 4.5% of the trip origins go to the Geofence/external region; and
- 4.4% of the trip destinations come from the Geofence/external region.

In summary, long distance trips only make up a small proportion of the travel within Lincoln. Further, it presents a reassurance, albeit at a very high level, of symmetry in the matrix at a daily level – this is presented later in Figure 4-1.

Proportions of the overall MND Matrix		1	2	3
Lincoln District	1	3.7%	2.7%	0.3%
Rest of Study Area	2	2.7%	60.6%	9.8%
Geofence and Externals	3	0.3%	9.8%	10.2%

3.4 Time of Day

The following graphs shows the time of day breakdown within the MND matrix.

- Figure 3-1 shows the percentage of average weekday flow by time period for peak period, and for the corresponding average peak hours. Over the full period, the inter-peak has the highest volume of trips. However, for average peak hours the AM has the highest volume of trips, with the PM very close.
- Figure 3-2 shows the same data but disaggregated by purpose; specifically the percentage of average weekday flow by peak period by purpose. In each time period, 'Other' has a greater share than 'Work' (noting that 'Work' in this context, using the labels from Citilogik, is referring to commuting).

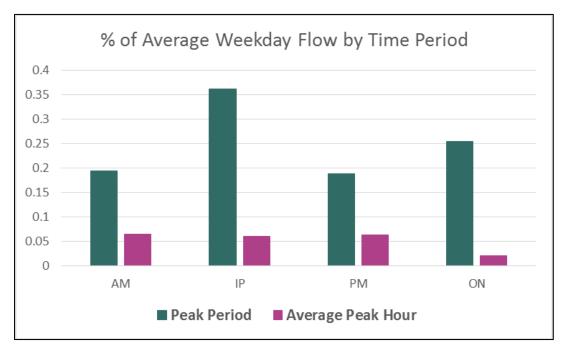
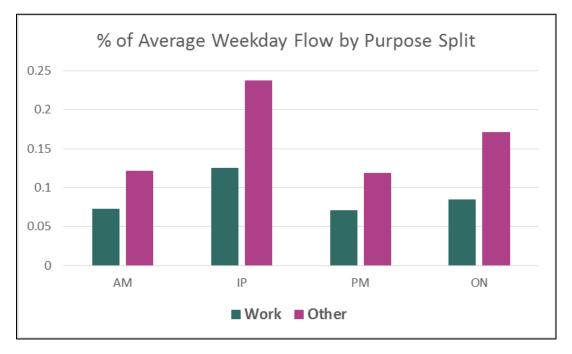



Figure 3-1 Percentage of Average Weekday Flow by Time Period

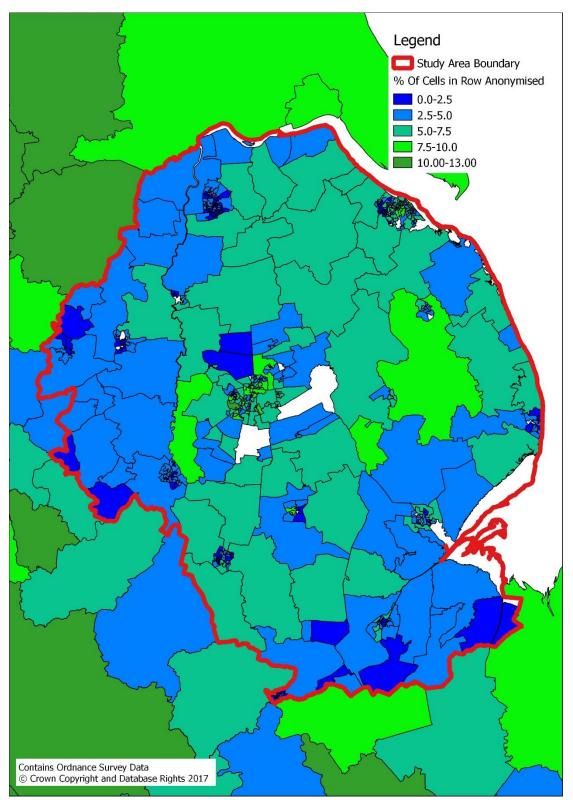
Figure 3-2 Percentage of Average Weekday Flow by Time Period and Purpose

4 Anonymisation

4.1 Anonymisation by Row and Column – MND Matrix

For confidentiality reasons, no cell in the matrix provided by Citilogik for the various permutations of the variables could have a value of less than 15. In such instances, the trip total was rounded by 15 prior to being supplied to Mouchel. For the avoidance of doubt, this does not include zero-cells – they were simply excluded from the data provided. It should be noted that the sample expansion process left most cells with values that were not precise integer values. Thus, cells which genuinely had 15 trips would appear in the matrix with some spurious decimals (e.g. '15.000018'). Mouchel are, therefore, confident that there is negligible risk of confusing an anonymised cell with a cell containing genuine data.

The percentage of cells that have been anonymised in the MND matrix dataset are summarised in Table 4-1 below, by row and column. This analysis has been restricted to weekdays, but includes all time periods and all combinations of mode, purpose and direction that were identified in Tables 3-1 to 3-3.


The analysis is also presented in Figure 4-1 and Figure 4-2 which show, for rows and columns respectively, the percentage of cells anonymised for each zone. These show that geographically, the cells most affected by anonymisation are mostly external to the study area. Note that the zones which are white are those which have no trips due to insufficient mast density – see Section 1.4.

There is little difference between the row and column totals which gives a very high level indication of symmetry. The average and the median are very similar, and whilst the maximum values are considerably higher than those two metrics, the 85th percentiles reassure that for the majority of zones, the percentage of anonymised rows or columns is at most 6.7%.

Summary	% of Rows Anonymised	% of Columns Anonymised
Average	4.5%	4.5%
Median	4.3%	4.3%
Minimum	0.0%	0.0%
Maximum	12.7%	12.8%
85th Pecentile	6.7%	6.6%

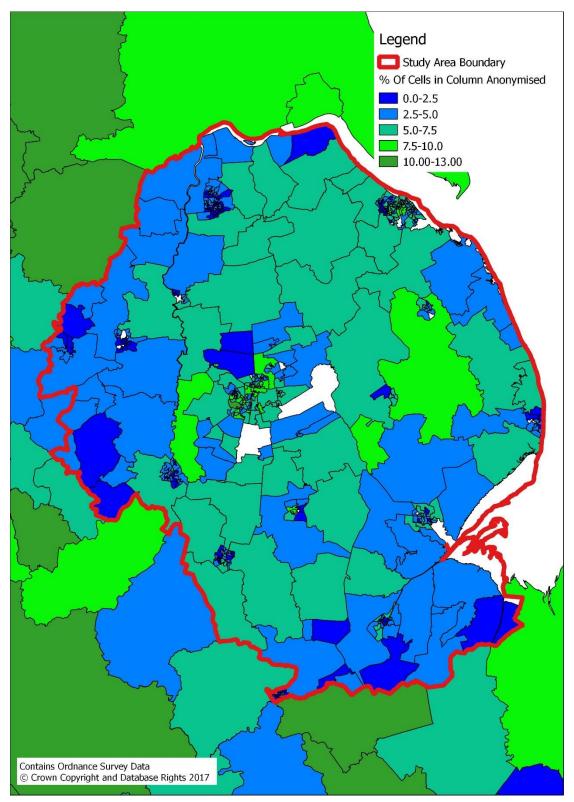

Table 4-1 Anonymisation by Row and Column - MND Cell Matrix

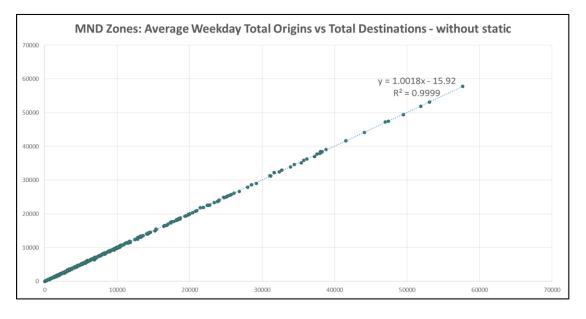
Figure 4-1 Percentage of Cells in Row Anonymised

Figure 4-2 Percentage of Cells in Column Anonymised

4.2 Zero Trip Zones

There are 27 zones in the study area with no trip ends at all. The majority of these are LSOA definitions in the urban areas in the wider county, however there are two of particular interest immediately south and east respectively of Lincoln city centre.

- Those two zones are rural and it was confirmed by Citilogik that they have no trips associated to them due to minimal or no overlap with cell coverage areas.
- For the zones in or around the towns in the wider county, it is expected that this is caused by low mast density compared to the detailed zoning at LSOA level.


4.3 Further Symmetry Considerations

The symmetry within the dataset is demonstrated in Figure 4-3 and Figure 4-4. Both plots have an R^2 value greater than 0.999 and low intercept values which indicate a strong relationship in each plot between their respective variables.

- The former shows that the dataset has the appropriate balance for each zone of origin trips against destination trips with no outliers. It gives confidence that trips for a traveller within the matrix start from the same zone where their last recorded trip ended.
- The latter shows that within the dataset, each time a traveller leaves home they will make a corresponding return trip home at some point during the course of the day.

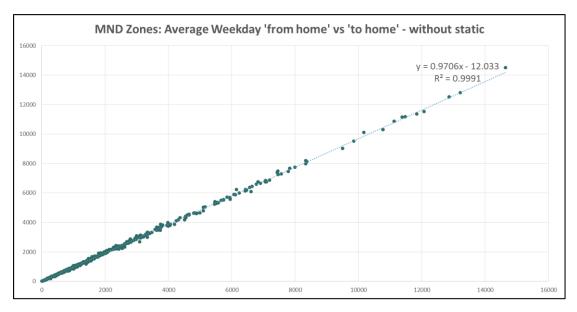

Since the MND covers a four week period, a cell value of 15 for a weekday represents $\frac{3}{4}$ of a trip on an average weekday. Given the low anonymization threshold and the low percentage of anonymised cells it is reasonable to assume that the process does not have much impact on the quality of the MND.

Figure 4-3 Origin vs Destination Symmetry

Figure 4-4 'From home' vs 'to home' Symmetry

4.4 Corresponding Trip End Datasets

Mouchel has also been provided with the trip end datasets which correspond to the MND origin destination matrix. The same confidentiality threshold has been applied to the trip end datasets, however that will have been based on the origin or destination total for a particular zone, as opposed to the individual cells. Whilst individual cell values may fall below the confidentiality threshold for a particular zone, the zone would have very low trips if the total origins or destinations fell below the threshold.

The following logic checks were verified for the trip end and (cell) matrix datasets:

- The row sum for a particular zone in the (cell) matrix is greater than or equal to the origin value for that zone in the trip end dataset; and
- The column sum for a particular zone in the (cell) matrix is greater than or equal to the destination value for that zone in the trip end dataset.

Greater Lincoln Transport Model

Verification of Mobile Network Data

5 Trip Rates Checks

5.1 Origin Trip Rates – Impact of Static Trips

The first comparison was to establish the significance of the static trips within the matrix. The average weekday origin trip rates – i.e. total distinct trips – were calculated by district, based on population data from the 2011 census expanded to 2016 using ONS mid-year population estimates. The results are presented in Table 5-1.

We see that the static trips account for roughly half of the matrix, as summarised in Table 5-2, and their inclusion leads to unrealistically high origin trip rates. When the static trips are excluded, the origin trip rates range from 2.93 to 3.83. Aggregated to the whole study area, this gives a weekday average value of 3.11 distinct trips per person for the study area.

District		odes	Motorised, Rail and Slow	
District	Total Origins	Origin Trip Rate	Total Origins	Origin Trip Rate
Bassetlaw	752,465	6.95	361,325	3.34
Boston	406,964	6.42	200,325	3.16
East Lindsey	770,670	5.72	380,652	2.83
Lincoln	646,254	6.74	328,160	3.42
Newark and Sherwood	744,488	6.29	359,516	3.04
North East Lincolnshire	833,877	5.55	441,823	2.94
North Kesteven	791,660	7.47	405,787	3.83
North Lincolnshire	1,040,701	6.19	503,198	2.99
South Holland	563,853	6.19	273,320	3.00
South Kesteven	827,285	6.20	400,495	3.00
West Lindsey	489,957	5.81	246,968	2.93

Table 5-1 Average Weekday Origin Person Trip Rates by District – All Purposes

Table 5-2 Average Weekday MND Matrix Trip Totals

Static Trips	3,966,606	50.41%
Non-Static Trips	3,901,568	49.59%

5.2 Comparison with TEMPRO – Home Based Productions

The average weekday home based production trip rates were calculated as a sense check, and compared against TEMPRO. This analysis is presented in Table 5-3 below for two cases:

- Motorised, Rail and Slow MND modes versus all TEMPRO modes; and
- Motorised and Rail only in MND versus TEMPRO for car and PT modes only.

The static trips were excluded from this analysis.

Citilogik had noted in their conclusions, see Chapter 12 of Appendix A, that their own verification checks had highlighted a shortfall in home based trips compared to NTS and this is evidenced by this analysis.

District	Motorised, Rail and Slow Trip Rates		Motorised a	Trip Rates		
District	MND	TEMPRO	Difference	MND	TEMPRO	Difference
Bassetlaw	0.79	1.07	-27%	0.63	0.85	-26%
Boston	0.91	1.06	-14%	0.66	0.84	-21%
East Lindsey	0.72	1.03	-30%	0.59	0.83	-28%
Lincoln	0.93	1.09	-15%	0.58	0.79	-26%
Newark and Sherwood	0.82	1.05	-22%	0.62	0.86	-28%
North East Lincolnshire	0.81	1.09	-26%	0.59	0.80	-25%
North Kesteven	1.00	1.06	-6%	0.79	0.87	-9%
North Lincolnshire	0.74	1.06	-30%	0.57	0.85	-34%
South Holland	0.83	1.05	-21%	0.66	0.87	-24%
South Kesteven	0.74	1.07	-31%	0.57	0.86	-34%
West Lindsey	0.75	1.04	-28%	0.63	0.86	-27%

Table 5-3 Average Weekday Home Based Production Person Trip Rates

5.3 Comparison with TEMPRO – Total Trips

It was suggested by Citilogik that some of the shortfall in home based trips is linked to the home end of the trip not being 'snapped' to the inferred home location, thus it may be recorded as a non-home based trip instead. To investigate this, the total trips in the MND dataset were compared against the total trips in TEMPRO for the same two cases used in Section 5.2, with the static trips again excluded from the MND data. This analysis is presented in Table 5-4.

Also presented is the same comparator but for highway trips only; i.e. motorised trips in MND compared against car and bus modes only in TEMPRO. This has been added to evidence the magnitude of the rail element in the MND matrix. It was noted by Citilogik in their conclusions that, for the study area, the rail proportion of all trips was 6.5% against high level NTS reporting of 3% nationally. They attributed this to short range trips being assigned as rail due to the cell to cell routing following rail routes.

We see that at the *delta*-difference for MPOD / TEMPRO ranges from 1.20 to 1.29 between the three comparators. Note that, at this stage, the MND data still includes the Goods Vehicles (GVs) therefore it would be expected that the MND matrix should be higher to a reasonable extent in this comparison. The preliminary analysis of the available MCCs suggests an indicative global value of around 15%. Taking this account, the *delta*-differences are generally of a magnitude of what would be expected.

For Lincoln district, we see that this actually has a lower *delta*-difference for the highway modes only comparison in Table 5-5. This may be a facet of the potential excess allocation to rail that Citilogik suggested may have occurred.

This analysis also suggests that the static trips should be excluded from the matrix build process. The *delta*-differences presented here demonstrate that, in general, the MND matrix is of a reasonable order of magnitude compared with TEMPRO when they are excluded. Including the static trips would, by the result in Table 5-2, indicatively double the *delta*-differences calculated here and the MND matrix would be significantly disproportionate magnitude when compared to TEMPRO.

District	Motorised, Rail and Slow Total Trips		Motorised a	/ Total Trips		
DISTRICT	MND	TEMPRO	δ Difference	MND	TEMPRO	δ Difference
Bassetlaw	722,995	558,068	1.30	607,435	439,799	1.38
Boston	400,780	312,584	1.28	306,395	252,485	1.21
East Lindsey	759,860	670,744	1.13	648,057	524,485	1.24
Lincoln	656,290	578,848	1.13	436,994	435,992	1.00
Newark and Sherwood	719,982	600,328	1.20	577,485	487,149	1.19
North East Lincolnshire	884,576	826,727	1.07	686,739	617,237	1.11
North Kesteven	811,288	473,226	1.71	669,344	385,607	1.74
North Lincolnshire	1,005,512	776,109	1.30	817,785	611,722	1.34
South Holland	546,910	372,952	1.47	446,185	310,080	1.44
South Kesteven	801,870	647,246	1.24	652,389	512,945	1.27
West Lindsey	492,599	382,414	1.29	432,812	310,205	1.40
TOTAL	7,802,663	6,199,246	1.26	6,281,619	4,887,706	1.29

Table 5-4 Average Weekday Total Two-Way Trips – All Purposes

Table 5-5 Average Weekday Total Two-Way Highway Trips – All Purposes

District	Motorised Only Total Trips			
DISTRICT	MND	TEMPRO	δ Difference	
Bassetlaw	578,346	432,843	1.34	
Boston	256,986	248,646	1.03	
East Lindsey	623,811	516,485	1.21	
Lincoln	370,395	422,604	0.88	
Newark and Sherwood	550,578	476,795	1.15	
North East Lincolnshire	567,350	601,917	0.94	
North Kesteven	606,764	377,963	1.61	
North Lincolnshire	787,452	600,081	1.31	
South Holland	405,172	305,780	1.33	
South Kesteven	600,789	502,719	1.20	
West Lindsey	411,477	305,085	1.35	
TOTAL	5,759,121	4,790,918	1.20	

6 Trip Purpose and Home Based / NHB Checks

6.1 Comparison with **TEMPRO –** Purpose Splits

A trip will only be classified as 'Work' within the MND matrix if the data processing algorithms were able to infer a regular work location for the device over the data capture period. It is acknowledged by Citilogik that the assignment of devices to work locations can be difficult where people do not have a regular work location. The Work / Other purpose split within the MND matrix has been compared against the TEMPRO purpose split.

This analysis is presented for motorised, rail and slow modes in both datasets for an average weekday, as per previous analysis. The home based and non-home based differentiation was ignored, with both elements combined for this check.

Note that, as commented in Section 1.2, 'Work' used in this context, taken from the MND definitions, is referring to commute trips and not employer business, which are categorised within 'Other' in the MND data. TEMPRO also refers to commuting as 'HB Work' and 'NHB Work', distinct from employer business.

Initially, when aggregating the TEMPRO purposes into two categories of Work and Other, education was assigned into the Other grouping. These results are presented in Table 6-1, and demonstrate a 16% difference in the purpose split between the two datasets.

A second comparison was carried out with the TEMPRO definitions redefined whereby education was moved into the Work grouping, rather than other. These results are presented in Table 6-2 and show the Work/Other purpose split between the MND matrix and TEMPRO to be very close.

Table 6-1 Work/Other Split Proportions - Education aggregated with 'Other'

Purpose	MND	TEMPRO
Work (HB and NHB)	0.37	0.21
Other (HB and NHB)	0.63	0.79

Purpose	MND	TEMPRO
Work (HB and NHB)	0.37	0.35
Other (HB and NHB)	0.63	0.65

6.2 Comparison with TEMPRO – Home Based / Non-home Based Splits

It was observed in Section 5-2 that there is a shortfall in home based trips in the MND data. The home based / non-home based proportions have been compared against TEMPRO, as per the purpose split, for motorised, rail and slow modes for an average weekday. Education trips in TEMPRO have been aggregated into Work for the data presented in Table 6-3.

This analysis shows that there is an underrepresentation of home based trips in the MND dataset compared to TEMPRO. As discussed in Section 5-2, Citilogik attribute this difference due to issues with 'snapping' the trip end to the inferred home location. This can be caused by cell coverage area overlap and a journey does not register an event with its 'home cell', and subsequently, is recorded as non-home based. A catchment area of 1.5km was applied to mitigate for this, calibrated for Lincolnshire.

This will need to be reconciled at an early stage in the matrix build process. Further analysis will need to be undertaken to establish whether this is to be achieved through reallocating trips into home based, through scaling the respective matrices or another method. Since a catchment area has been applied to minimise the 'lost' home trip ends, it may be the case that trips wrongly assigned as non-home based will not have been allocated to the home zone, in which case reallocation would not be appropriate.

Purpose	MND	TEMPRO	Difference
HB Work	0.18	0.33	-0.15
HB Other	0.34	0.55	-0.21
NHB Work	0.19	0.02	0.17
NHB Other	0.29	0.10	0.19

Table 6-3 HB / NHB Split Proportions - Education Aggregated with Work

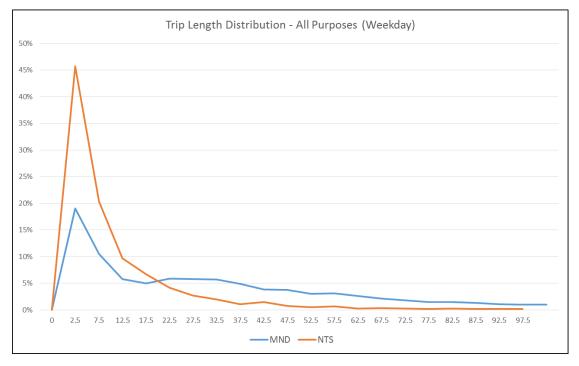
7 Trip Length Distribution Checks

7.1 Comparison with NTS

A prior expected weakness of mobile phone data is that there will be a shortfall in short distance trips. This can be caused by trips not moving outside of the coverage age of a single cell, in particular for rural areas where the mast density is lower.

The trip length distributions for the MND data have been compared to those from National Travel Survey (NTS) data for all of the East Midlands, to assure a statistically significant sample. Following the purpose split checks in Section 6, education has been combined with commuting into NTS – corresponding to the MND category 'Work'.

It was acknowledged by Citilogik that there is an excess of short distance trips which have been classified as rail. This is evidenced through comparing the plots presented in Figure 7-1 and Figure 7-2.


- In Figure 7-1, both data sets are presented for highway motorised only. There is a significant shortfall in shorter distance trips compared to NTS.
- In Figure 7-2, both data sets are presented for highway motorised and rail combined. There is still a shortfall in short distance trips however the discrepancy is much less than in Figure 7-1.

In Section 8, there is further identification of illogical rail trips. Combined with the Citilogik suggestion of a short distance rail excess, it is likely that a significant section of the rail component will need to be transferred to highway.

Further comparisons are shown in Figure 7-3 to Figure 7-6 to disaggregate the data by home based / non-home based and by purpose. For the reasons discussed above, the MND and NTS data presented in those graphs include both highway and rail, otherwise that problem would still be present and mask any other conclusions that further disaggregation could inform. From Figure 7-3 to Figure 7-6, we can see that:

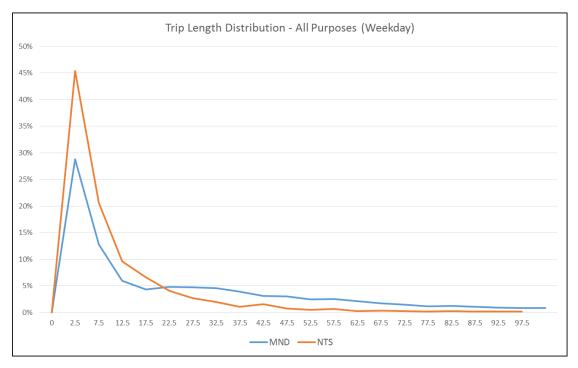

- The MND TLD for Home Based Work matches very closely to NTS. Further, A TLD for education only would typically be shorter than commute therefore this provides further evidence that education in the MND data is within the 'Work' category.
- The shortfall in distance trips is more prevalent in the non-home based graphs. However, from Section 6, we know that there is an over-representation of nonhome based trips, so this check may need to be revisited when that has been rectified.

Figure 7-1 TLD Comparison: All Purposes – Highway Motorised Only

Figure 7-2 TLD Comparison: All Purposes – Highway and Rail Combined



Figure 7-3 TLD Comparison: Home Based Work (as commute and education)

Figure 7-4 TLD Comparison: Home Based Other (as *business* and *other*)

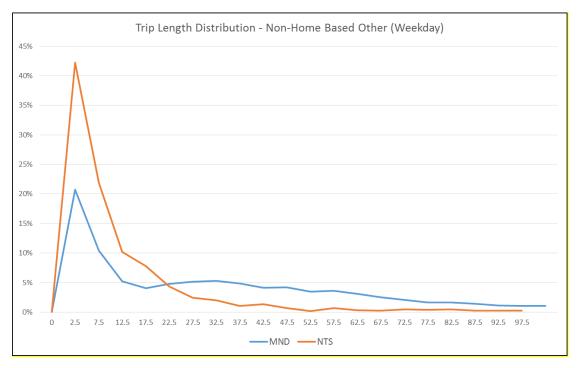


Figure 7-5 TLD Comparison: NHB Work (as commute and education)

Figure 7-6 TLD Comparison: NHB Other (as business and other)

8 Rail Matrix and Mode Split Checks

8.1 Inter-District Distribution

As part of the data processing undertaken by Citilogik, summarised in Section 1-2, trips were first classified as motorised based on the average travel speed, then disaggregated into 'Rail' and 'Motorised' (the latter therefore referring to 'highway motorised') through analysing trip paths against pre-defined rail routes.

The total rail origin and destination trips for an average weekday have been tabulated in Table 8-1, plus the percentage difference between Destination total and Origin total. The overall totals show a very high level of symmetry, likewise for the Geofence/external subcomponent and for the study area as a whole aggregated. There are some discrepancies at a district level, most noticeably for East Lindsey, West Lindsey and South Kesteven.

District	Origins	Destinations	Difference (D O)
Bassetlaw	14,345	14,743	3%
Boston	24,395	25,014	3%
East Lindsey	13,052	11,193	-14%
Lincoln	33,126	33,472	1%
Newark and Sherwood	13,582	13,325	-2%
North East Lincolnshire	59,188	60,202	2%
North Kesteven	31,483	31,097	-1%
North Lincolnshire	15,187	15,145	0%
South Holland	20,456	20,557	0%
South Kesteven	25,225	26,375	5%
West Lindsey	11,133	10,202	-8%
Study Area Combined	261,173	261,326	0%
Geofence/External	130,458	130,304	0%
TOTAL	391,630	391,630	0.0%

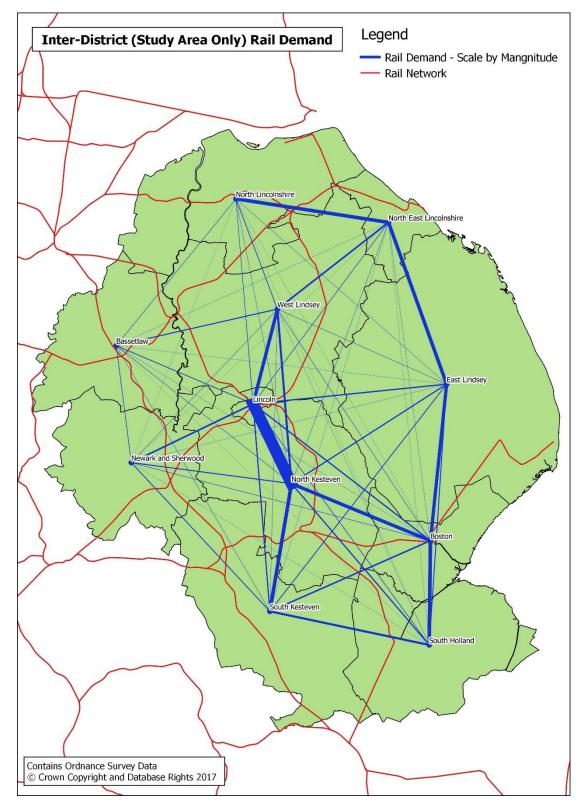
Table 8-1 Rail Matrix Symmetry by District - Average Weekday

As a sense check on the distribution of the rail trips, desire lines have been plotted for total trips on an average weekday for the inter-district elements within the study area. These are shown in Figure 8-1, with the desire lines mapped between district centroids (which based on polygon shape rather than placed at any specific population centre).

The total trips for these movements, limited to those with greater than 1,000 trips for an average weekday, are summarised in Table 8-1. Two of the routes within the list would appear to be illogical for such volumes, highlighted in light green.

• Boston to South Holland

The major population centres are Boston and Spalding respectively. Rail trips would have to travel via Sleaford (in North Kesteven) which appears to be a convoluted route, compared to travelling by car or bus. This is supported by using Google Maps route planner which did not propose rail as a standard option for that trip.


• East Lindsey to North East Lincolnshire

The major population centres are Skegness for East Lindsey and Grimsby and Cleethorpes for North East Lincolnshire. There is no rail connection between these areas on the east coast, with Skegness and Cleethorpes at the end of their respective lines. Rail trips would have to travel via four districts to make this journey. Using Google Maps route planner, this could involve up to three connections, unless the majority of the trip was using another mode anyway.

Origin District	Destination District	Trips
North Kesteven	Lincoln	8,761
Lincoln	North Kesteven	8,561
North Kesteven	South Kesteven	2,703
South Holland	Boston	2,697
North Lincolnshire	North East Lincolnshire	2,652
East Lindsey	North East Lincolnshire	2,626
Boston	South Holland	2,573
North East Lincolnshire	North Lincolnshire	2,553
West Lindsey	Lincoln	2,553
North Kesteven	Boston	2,532
East Lindsey	Boston	2,468
Boston	North Kesteven	2,454
South Kesteven	North Kesteven	2,384
Boston	East Lindsey	2,268
Lincoln	West Lindsey	2,199
North East Lincolnshire	East Lindsey	1,911
South Kesteven	South Holland	1,598
South Holland	South Kesteven	1,551
West Lindsey	North Kesteven	1,525
North Kesteven	West Lindsey	1,425
West Lindsey	North East Lincolnshire	1,264
Newark and Sherwood	Lincoln	1,182
Lincoln	Newark and Sherwood	1,153
South Kesteven	Boston	1,083
Boston	South Kesteven	1,024

Table 8-2 Inter-District Rail Trips - Average Weekday (>1000 trips)

Figure 8-3 Desire Lines for Rail Demand in MND Matrix

8.2 Rail Magnitude Check – Comparison with TEMPRO

It was commented by Citilogik in their conclusions that there may be an overrepresentation of rail trips within the matrix. Their analysis showed 6.5% of trips in the MND matrix were assigned as rail compared to a high level value national mode share of 3% for rail reported by NTS.

The previous analysis highlighted potential anomalies within the distribution, with some areas showing unexpected rail trip paths against the available rail routes. The magnitudes by district have compared against TEMPRO and are presented in Table 8-4 below. This shows that, aggregated over the study area, the rail component of the MND matrix is 5.4 times higher than TEMPRO.

We had seen previously in Table 5-4 that the magnitude of the MND matrix for highway motorised and rail combined showed a reasonable comparison against TEMPRO, accounting for the caveats raised regarding GV removal. This suggests that, when all motorised trips – both highway and rail – are considered, the MND matrix from Citilogik is of an expected magnitude but there is issue with how trips have subsequently been defined as highway motorised or rail.

District	MND	TEMPRO	δ Difference
Bassetlaw	29,088	6,957	4.18
Boston	49,408	3,839	12.87
East Lindsey	24,245	8,000	3.03
Lincoln	66,598	13,388	4.97
Newark and Sherwood	26,908	10,355	2.60
North East Lincolnshire	119,389	15,318	7.79
North Kesteven	62,580	7,644	8.19
North Lincolnshire	30,332	11,640	2.61
South Holland	41,013	4,300	9.54
South Kesteven	51,601	10,225	5.05
West Lindsey	21,336	5,120	4.17
TOTAL	522,499	96,786	5.40

Table 8-4 Average Weekday Two-Way Rail Trips – All Purposes

8.3 Mode Split – Comparison with TEMPRO

To confirm the findings in Section 8-2, the mode split in the MND matrix and TEMPRO for an average weekday have been compared.

The analysis is presented in Table 8-5 for all motorised and static trips, and in Table 8-6 for motorised only trips. The former verifies that the slow mode component of the MND matrix is of a similar proportion to that in TEMPRO, but that there is an excess of rail trips, which is confirmed by the latter. This difference, at a high level is 6%, which 30

is similar to the 5.4 times excess in magnitude reported previously in Table 8-4. Combined with the previous analysis, this suggests that there are both distribution and magnitude issues with the rail component of the MND matrix.

Table 8-5 Mode Split Proportions - MND versus TEMPRO - including slow modes

Mode Split	MND	TEMPRO
Rail	7%	2%
Motorised (highway)	74%	77%
Slow	19%	21%

Table 8-6 Mode Split Proportions - MND versus TEMPRO - motorised only

Mode Split	MND	TEMPRO
Rail	8%	2%
Motorised (highway)	92%	98%

8.4 Reallocation to Highway

Aside from the district level checks, it was also acknowledge by Citilogik that there is an excess of short distance rail trips as the result of the cell to cell routeing following rail routes. These include short distance intra-zonal and inter-zonal rail trips for zones with no stations inside and which would not pass between rail stations.

Analysis in GIS will be required using spatial queries to filter out the illogical short distance trips and to reallocate these to highway. This could include analysis of minimum distance to stations, or analysis of station catchment areas. However, the latter would only make sense for attraction ends, since people with access to a car may travel further to a departure station if there are quicker and/or more direct services, especially for longer distance rail trips.

Greater Lincoln Transport Model

Verification of Mobile Network Data

9 Conclusions

9.1 Summary of Findings

- The all-day weekday MND matrix has 49% of cells with non-zero trips. By time period, this ranges from 32% 39%.
- The majority of trips in the matrix are intra-study area (~70%).
- Long distance trips to or from or to the Geofence and external regions make up only a small proportion (~4.5%), by direction, of the travel demand for Lincoln district.
- The proportion of anonymised cells is low, on average 4.5% of a row of column. The majority of the zones most affected by anonymisation are external to the study area.
- Comparison with TEMPRO total trips showed that the MND matrix was of a reasonable order of magnitude with static trips are excluded. Since including the static trips would double the magnitude, they will likely need to be removed from the dataset used for the matrix build.
- Removing the static trips would implicitly remove all of the trips with unknown purpose, therefore no mitigation would be required for that.
- The purpose split between Work and Other in the MND dataset closely reflected the purpose split in TEMPRO when education and work where defined together in TEMPRO. There is potential that education trips have been allocated to Work purpose in the MND matrix.
- There is an underrepresentation of Home Based trips in the MND matrix when compared against TEMPRO. Further analysis is required to determine how this should be mitigated in the matrix build.
- There is a shortfall in short distance trips for all purposes combined, however this is more prevalent in the non-home based segments. The Home Based Work TLD is a good match to NTS when education is presumed to be within the 'Work' category, providing supporting evidence to that theory.
- There is an excess of rail trips, which should actually be classified as highway motorised. Some of these are short distance trips which do not travel a sufficient distance to pass two stations however there are also some routes identified as illogical for rail trips at a district level.

9.2 Actions for Matrix Build Process

- The anonymised cells will be removed from the data. These will be infilled using synthetic matrix techniques. This approach will also be taken for the zones which had zero trips due to insufficient mast density.
- An adjustment will need to be made to rectify the home based / non-home based proportion discrepancy. This could be implemented at a district level based on TEMPRO targets.
- A subset of the rail matrix will need to be transferred into highway motorised. An independent data source will be required to inform the magnitude of this change. Further GIS analysis may be required to determine which of the short distance rail trips are illogical, so that all illogical rail trips are included in the transfer.
- Other non-car highway trips LGVs, HGVs and bus will need to be subtracted from the highway motorised component. These will require independent data sources to generate matrices of volumes or proportions to operate this removal.
- The matrix build will initially assume that the 'Work' category, i.e. *commuting*, also contains *education* trips for the reasons discussed in this note. A method will still be required to segment the 'Other' category into *employer business* and *other* assignment user classes.

10 Reference Note – TEMPRO Versions

10.1 TEMPRO Update Comparison

The analysis presented in this technical note was undertaken using the TEMPRO v7 dataset for 2016, prior to the recent release of TEMPRO v7.2. This work has been to verify the conclusions presented by Citilogik and to inform what adjustments will be required to the data as part of the matrix development process.

The differences between the two versions of TEMPRO for average weekday trips across all modes for 2016 for the study area are presented in Table 10-1 below, as a high level comparator between the two versions. The differences are generally less than a percent which implies that there is little change for the study area between the two datasets for 2016. A similar check showed that the population values for 2016 also differ by generally less than a percent. Based on those two checks, implicitly the outturn trip rates would also be similar.

District	Total Origins			Total Destinations		
District	v7.0	v7.2	Diff.	v7.0	v7.2	Diff.
Boston	156,851	157,518	0.4%	155,733	156,341	0.4%
East Lindsey	335,577	337,105	0.5%	335,167	336,866	0.5%
Lincoln	287,357	284,806	-0.9%	291,491	288,984	-0.9%
North Kesteven	238,039	239,674	0.7%	235,187	236,770	0.7%
South Holland	187,558	189,220	0.9%	185,394	186,912	0.8%
South Kesteven	323,561	323,173	-0.1%	323,685	323,340	-0.1%
West Lindsey	191,272	193,356	1.1%	191,142	193,176	1.1%
Bassetlaw	278,656	279,597	0.3%	279,412	280,407	0.4%
Newark and Sherwood	301,014	300,437	-0.2%	299,314	298,745	-0.2%
North East Lincolnshire	412,009	408,653	-0.8%	414,718	411,363	-0.8%
North Lincolnshire	389,409	388,550	-0.2%	386,700	385,840	-0.2%

Table 10-1 TEMPRO 7 vs TEMPRO 7.2 Average Weekday Trips - All Modes

In conclusion, the comparison shows that the revised TEMPRO dataset would not materially change the conclusions presented in this note. However, any use of TEMPRO data within the matrix build process, or for any other part of the GLTM modelling, will use TEMPRO v7.2 data.

1 Network Acceptance Checks

Brojacti	Greater Lincoln Transport	Date:	22/08/2017
Project:	Model	TN Ref:	TN/02
Subject:	Network Acceptance Checks		
Author:	Ed Atkinson	Project	1073461
Reviewed:	Ben Patey	Ref:	1073401

1.1 Introduction

Mouchel has been commissioned by Lincolnshire County Council (LCC) to develop the Greater Lincoln Transport Model (GLTM). This technical note describes the network tests which were undertaken prior to the calibration and validation process.

1.2 Purpose of the Tests

This note sets out the requirements for a series of tests in order to provide evidence that:

- The network building is complete to the agreed standard;
- The network and inputs have been appropriately checked, the SATURN warnings have been reviewed and formal testing has been carried out against a list of potential errors; and
- The network coding is satisfactory, as far as can be determined, before commencement of the calibration/validation stage.

The overall objective of the process is to ensure, as far as practically possible, that coding errors arising from human error in the network building are eliminated before calibration/validation process starts. The initial network should be coded in accordance with the agreed principles defined in the Model Specification Report (MSR). However, it is recognised that there may be a subsequent amendments to the network following feedback from the network calibration/validation process.

For each test, background information on the purpose is provided along with a list of information that will be reviewed. Furthermore, the acceptance criteria will also be used as the basis for assessing whether the network meets the requirements of the study for this stage of the model development.

1.3 Description of Tests Undertaken

The following tests are to be carried out to ensure the network coding is in a satisfactory state before commencement of the calibration/validation stage. There were six types of test carried out, as described below:

- Test 1 Completeness Check This is to ensure that the network produced is complete according to the Model Specification Report.
- Test 2 SATURN Compilation Check This is to ensure that all the errors/warnings produced by SATNET has been reviewed and checked.
- Test 3 Inspection of Key Junctions This is to ensure that all the key junctions within the study area have been coded correctly.
- Test 4 Network Routeing This is to ensure that routeing check on the unloaded network is plausible and realistic.
- Test 5 Link Consistency Tests This is to ensure that link type, distance, speed limit, etc. are consistent between directions and along a road.
- Test 6 Flat Matrix Assignment Test This is to ensure that model assignment with a flat matrix produce plausible results of routeing and also to investigate whether or not locations with excessively high delays are as a result of significant flows or due to coding error.

The following chapters describe in detail the steps and findings of each of the tests for GLTM.

2 Test 1 – Completeness Check

2.1 Background

The purpose of this test is to prove that the network produced is complete, including simulation and buffer network. Upon the completion of this test, it can be confirmed that the initial network development process has been concluded in accordance with the model specification.

2.2 Information required

The information with regard to this test will be provided, as below:

- Map of the simulation and buffer network, as agreed with the Lincolnshire County Council;
- Source of signal timing for signalised junctions: e.g. from Local Authority, from donor models, or using template signal junction coding;
- A map showing locations of signalised junctions by different sources;
- A spreadsheet providing signal timings for signalised junctions, with a technical note detailing signal data collection and assumption; and
- The full network in both GIS and SATURN network.DAT

2.3 Acceptance Criteria

The acceptance checks for this test would ensure:

- Coding of the network is complete, except for omissions previously agreed by the project team;
- Network coverage is as specified in the Model Specification Report (MSR) for both simulation and buffer networks;
- Reporting total number of nodes coded and checked; and
- The density of the network is as specified in the MSR.

2.4 Summary

Figure 2-1 shows the network that has been coded for the study region and Figure 2-2 shows the network coverage for the external area. As agreed with Lincolnshire County Council and specified in the MSR, all the roads within the study boundary have been

coded in the simulation network and roads outside the study boundary have been coded as buffer network.

A total of 10,519 links have been coded in the GLTM network covering a combined modelled distance of 15,064km, as summarised in Table 2-1.

A total of 2,557 nodes have been coded in the GLTM network as summarised in Table 2-2 below.

Table 2-1 Summary of Link Coding by Road Type

Road Type	Number of Modelled Links	Total Modelled Length (km)
Motorway	1,494	4,290
A Road	3,961	6,752
B Road	1,405	2,430
Local Road	3,659	1,593
Total	10,519	15,064

Table 2-2 Summary of Junction Coding by Type

SATURN Type	Description	Number of Nodes
0	External node	300
1	Priority junction	1341
	Exploded roundabout	48
2	Mini-roundabout	10
3	Signalised junction	104
Ŭ	Exploded signalised roundabout	3
4	Dummy	0
5	Roundabout (with U-turns)	18
n/a	Zone centroids	733
	Total	2,557

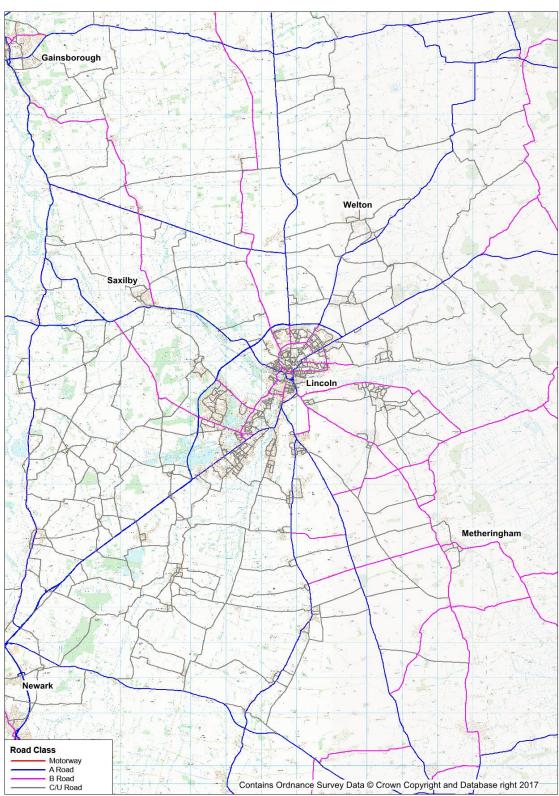


Figure 2-1 Model Network - Study Area

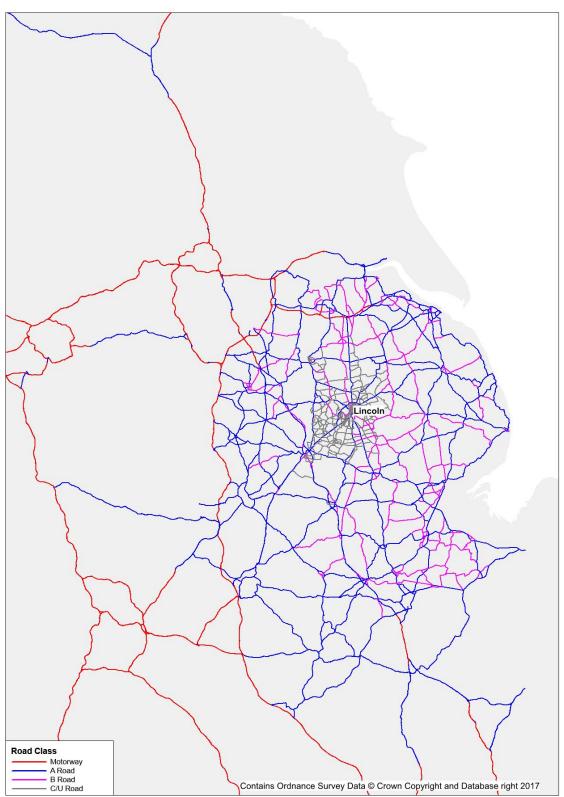


Figure 2-2 Model Network - External Area

3 Test 2 – SATURN Compilation Test

3.1 Background

The purpose of this test is to prove that the network, including the buffer network, may be compiled in SATURN with the option "Set WRIGHT = TRUE" without raising unacceptable errors. The test should confirm that the initial network development has been successfully built using SATNET.

3.2 Information required

The following information will be reviewed:

• A list of SATURN warnings, with annotation or accompanying documentation explaining the serious warnings and why they can be safely ignored. Specifically this will include a table summarising the "SATNET Network Building Report" with the total number of serious warnings and Non-Fatal errors and comments stating that why these are acceptable.

3.3 Acceptance Criteria

The acceptance checks should ensure that:

- There should be no Fatal or Semi-Fatal errors as specified by SATURN; and
- For other SATURN serious warnings or warning, a satisfactory explanation for each warning should be provided for the coding with the core modelled area

3.4 Summary

Table 3-1 below provides a list of all the warnings produced from SATNET.

SEGMENT	WARNING	SERIOUS	NON FATAL	NAFF	FATAL	Total
			NONTATAL			Total
&OPTION	0	0	0	0	0	0
NETWORK TITLE	0	0	0	0	0	0
&PARAM	0	0	0	0	0	0
11111 SIMULATION	563	2134	0	0	0	0
22222 SIM CCs	0	2	0	0	0	0
33333 BUFFER	674	61	0	0	0	0
44444 RESTRICTs	0	0	0	0	0	0
55555 CO-ORDS	1	0	0	0	0	0
66666 ROUTES	51	4	0	0	0	0
77777 COUNTS	6	0	0	0	0	0
88888 GEN COSTS	0	0	0	0	0	0
Total	1,295	3,320	0	0	0	4,615

Table 3-1 Summary of Total Warnings/Errors from SATNET

Table 3-2 below provides a detailed list of the warnings and their comments.

Code	Description	Quantity	Comments			
Warnin	Warnings: 1,295 warnings					
1	Rather high or low speed	3	Links within industrial/business park area (car park connectors)			
4	An X marker has no opposing major flows	1	One way street			
8	Priority marker X has appeared for 2 or more turns on 1 link	1	Correct for junction layout			
12	More than one give way turn sharing a single lane at a priority junction. See Section 6.4.9.	106	Opposed right-turn at priority junctions, single lane approach			
16	Rather long inter-green time for a stage	14	Observed signal timings			
19	Total stage plus intergreen times not equal input cycle time	1	Checking			
20	Coded as F, a permanent filter at traffic signals, but also explicitly mentioned in one or more stages. Since by definition it is 100% green it is not necessary to code it explicitly.	3	Observed signal timings			
23	The total upstream saturation entry flows seem to be inconsistent with the number of lanes at the downstream end.	5	Checking			
30	The calculated speed is outside the expected range KPHMIN to KPHMAX	22	Speed obtained from TM JT data in buffer network			
32	Simulation link distances and/or times differ in reverse directions	4	Different capacity indices applied due to different number of lanes by direction			

Table 3-2 Detailed List of Warnings from SATNET

Code	Description	Quantity	Comments
33	Suspicious link distance - Input values differ markedly	973	Road geometry/curvature – see Test 5
39	Repeated bus route name / the route name field is blank	45	SATURN limitation in bus route labelling
42	A counted link bridged by a Centroid Connector	6	Checked for impact on count – no action
43	A turn is coded as a right turn but is not the last.	5	Junctions at dual carriageway where the last turn is the U-turn, or junctions where banned turn is coded
51	The saturation flow per lane is high (>MAXLSF)	2	Lane markings at roundabouts
53	Two priority movements share the same exit but neither has a turn priority marker	4	Lane gain on slip-roads to main carriageway
68	A priority marker G looks suspiciously like a merge! (M)	5	Dedicated left turn lane at traffic signals
73	Bus route with U-turns at non-simulation nodes	6	Ignored
76	Possible underestimated stack capacity > 5 at "XY" nodes	1	Ignore
84	An inter-green time is redundant – all turns continuously green	23	Observed signal timings
96	A give-way turn (priority marker G) has both shared and unshared lanes. While this can occur commonly – and therefore "correctly" - in real life, it does cause potential convergence problems with the lane choice algorithm so, if you are otherwise undecided, code separate unshared lanes.	31	Lane markings at exploded roundabouts
98	Possible opportunity for a Clear Exit Priority Modifier?	34	Ignore
Serious	Warnings: 3,320 warnings		
109	Some of your in-links may not have been defined in strict clockwise order. A series of left-hand turns (Ignoring one-way streets) through the following nodes fails to return to Its starting point as it should, or else requires more than 20 steps to do so. Please check these node sequences on a map. See Section 6.4.8. N.B. If your network contains overpasses etc. this may be the explanation, in which case ignore this error.	96	Checked
111	No opposing turns found for a turn with a priority marker	2	Due to junction arms not included in the model network

Code	Description	Quantity	Comments		
112	Zone connected to both external sim nodes and other types	2	Ignore		
113	Input simulation arms not in (counter-)clockwise order	2	Ignore		
124	A nearside turn which is all green but not a filter	8	Due to pedestrian crossing at junction		
135	More than one give way turn sharing the single lane: major arm at a priority junction; see Section 6.4.9.	788	Insufficient space for right-turn traffic to wait in the road without blocking ahead traffic		
136	Suspicious link distance compared to crow- fly distance	91	Road geometry/curvature		
137	The turn saturation flows per lane differ widely; see Section 6.4.6.3.	1027	Saturation flows coded at roundabout		
138	Saturation flows differ widely between roundabout arms	1	Saturation flows coded at roundabout		
152	A single-lane arm at signals which includes an X-marked turn; see Section 6.4.	19	Bus only arm which is opposed		
154	X-turn shares identical lanes with the turn inside it but that turn could use lanes further inside to avoid being blocked by the X-turn	3	Insufficient space for X-turn traffic to avoid blocking ahead traffic		
157	Mid-link capacity either >> or << stop-line saturation flows	116	Checking during calibration		
159	CLICKS speed on a link < the normal speed at capacity	1119	Checking during calibration		
161	An X-turn at a priority junction has no major turns opposing	1	Junction layout		
167	Buffer zones to stub links: different directionalities;5.5.4	4	External area centroid – ignore		
178	Strange stage sequencing for an X-turn at signals	11	Observed signal timings		
183	LCY for a node differs from its neighbours	37	Checked		
187	Mixture of late cut-offs and opposed stages for sig. X-turns	1	Observed signal timings		

4 Test 3 – Inspection of Key Junctions

4.1 Background

The purpose of this test is to demonstrate that the key junctions and intersections, that by definition have the greatest influence in the model calibration and validation, are coded appropriately. The test will focus on the subjective aspects of the junction coding process.

The test should therefore confirm that:

- The characteristics of the selected key junctions/intersections have been appropriately characterised in a consistent manner; and
- For each selected key junctions/intersections, the junctions have been correctly coded as agreed in the MSR.

4.2 Information required

Identify all the key junctions/intersections within the core modelled areas. For GLTM, these junctions will be the major intersections on routes around the city centre.

4.3 Acceptance Criteria

To ensure that the process uses and evidence-based approach, a detailed check of the coded network with available source of information including OS ITN, aerial photography and signal timing sheets, using the following pro-forma:

Junction Type	Items to be tested	Acceptance			
All Junctions					
	Junction type	Correct definition			
	Number of lanes at stop-line				
	Number of lanes on the main (mid-) link approach				
	Main Link type classification (and resulting cruise speed)				
All	Representation of flares and the coded length(s)	Consistent and appropriate representations based on the available data sources			
	Selected GAP values within pre- determined range				
	Lane definitions for each turn				
	Representation of Bus Lanes				
	Turn Priority Markers				

Junction Type	Items to be tested	Acceptance					
	Saturation Flow						
	Stacking capacity						
Specific Checks by Junction Type							
	Coding of Filters						
	Definition of Stages	Correct based on signal timings data					
Signalised	Cycle time and Offset						
	Green times						
	Inter-green times						
Roundabout	Time to circle roundabout	Consistent and appropriate representations based on the available data sources					
Priority	Right turn on major arm definition	Consistent and appropriate representations based on the available data sources					

The quality of the model will then be established to determine if there are any serious deficiencies or differences in approach that may have a detrimental impact on the model calibration and validation process. If required, a suitable mitigation process will be determined.

4.4 Summary

All the major junctions/intersections in network have been coded. The network has been then reviewed and amended where appropriate to accommodate the detailed zones plan for the study area. The junction coding was based on Google Maps with the following information:

- Junction type: priority, signalised junction, normal roundabout, large roundabout, and signalised roundabout;
- Junction layout: number of approaches, number of lanes on approach, flare lane, roundabout diameters for roundabouts;
- Signal timings were obtained from LCC.

5 Test 4 – Network Routeing

5.1 Background

The purpose of this test is to prove that the network routeing for all vehicle types, are sensible, particularly for longer distance trips around Lincoln.

The test should then confirm that the route choice through the coded network, based on unloaded conditions, are realistic and appropriately differentiates between the principle vehicle groups.

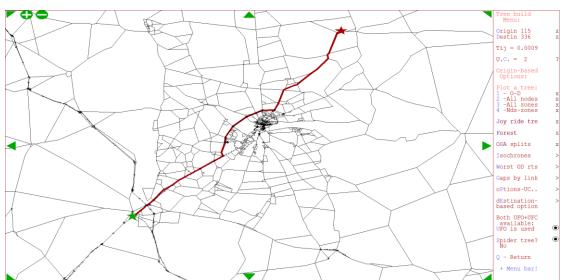
5.2 Information required

Text a series of key strategic routes in the core modelled area will be identified and used as the basis of the test. Plots of paths for each identified pairs of places will then be presented showing how vehicles route through the network.

5.3 Acceptance Criteria

Paths should show plausible routeings, in particular for areas that are unexpectedly avoided or unexpectedly attractive on the unloaded network.

Differences in routeings between the principle vehicle groups (arising from banned links and turns) should be justified through reference to the source data.

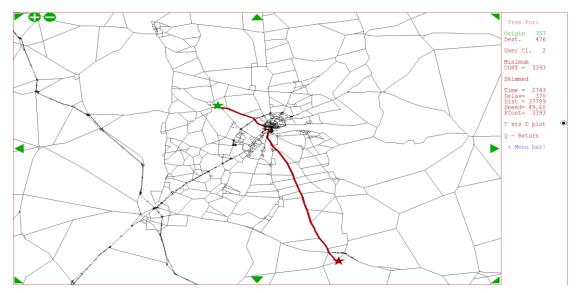

5.4 Summary

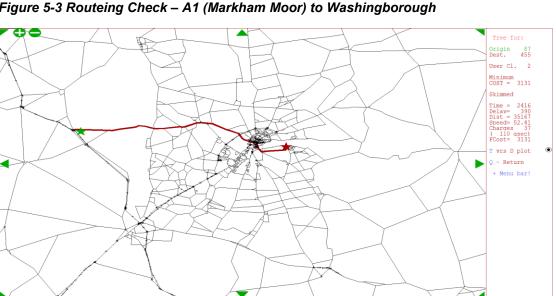
Guidance presented in TAG Unit M3-1 proposes the number of routes to be tested is derived from the formula:

• Number of OD Pairs = (Number of Zones)^{0.25} x Number of User Classes

Based on the proposed zone system for the base year with 733 zones, this amounts to 26 routes.

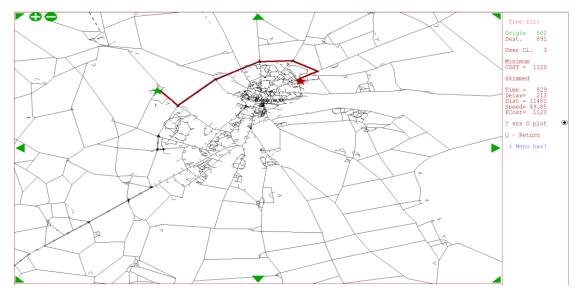
Figures 5-1 to 5-26 provide checks on routeing between different OD pairs. The routes all appear plausible with traffic taking the most obvious route in all cases.




Lincolnshire

HIGHWAYS ALLIANCE

Figure 5-1 Routeing Check – Newark to Market Rasen



Lincolnshire

HIGHWAYS ALLIANCE

Figure 5-3 Routeing Check – A1 (Markham Moor) to Washingborough

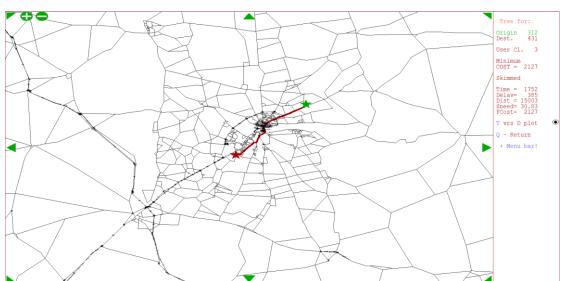
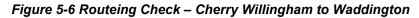
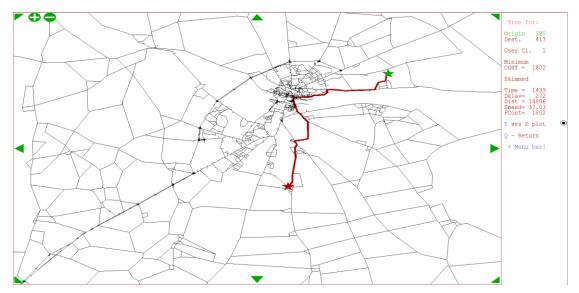




Figure 5-5 Routeing Check – Sudbrooke to North Hykeham

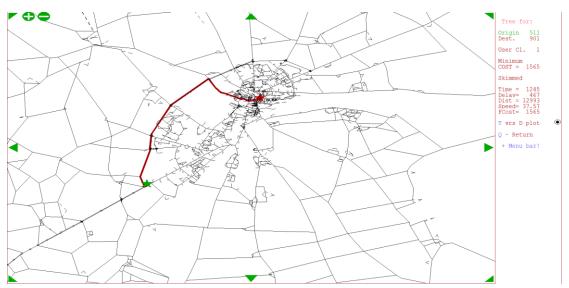
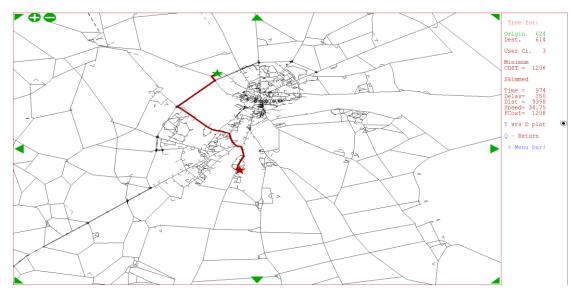



Figure 5-7 Routeing Check – A46/A1434 to City Centre

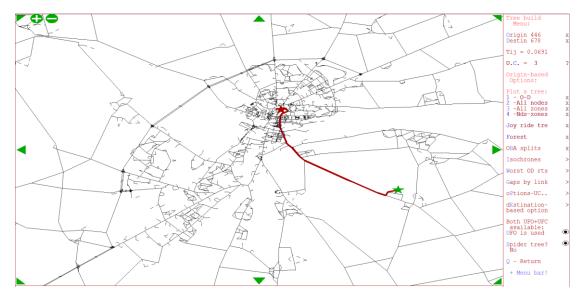
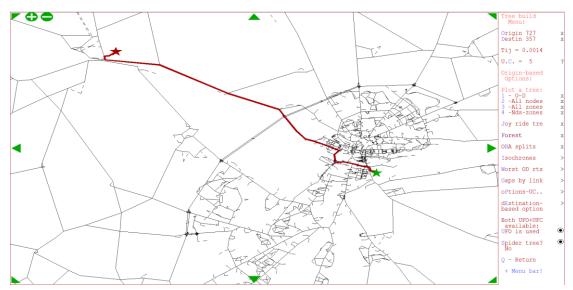



Figure 5-9 Routeing Check – Branston to Lincoln Cathedral

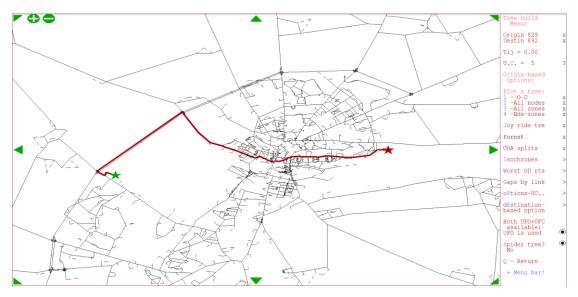
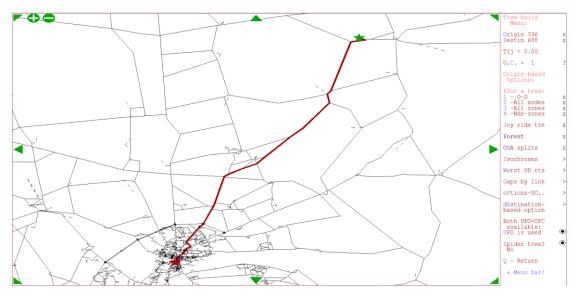



Figure 5-11 Routeing Check – Birchwood to Allenby Road Industrial Park

Figure 5-12 Routeing Check – Market Rasen to City Centre

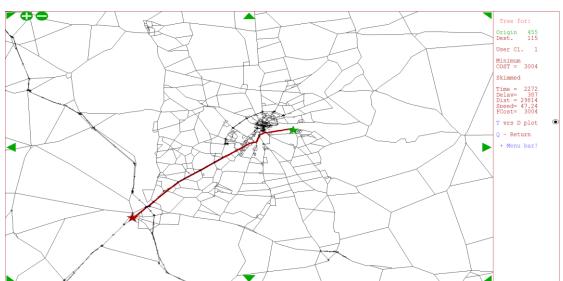
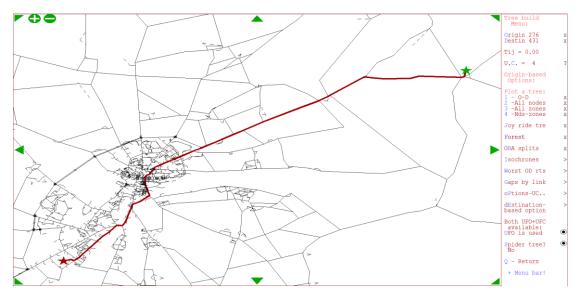



Figure 5-13 Routeing Check – Washingborough to Newark

Figure 5-14 Routeing Check – Wragby to North Hykeham

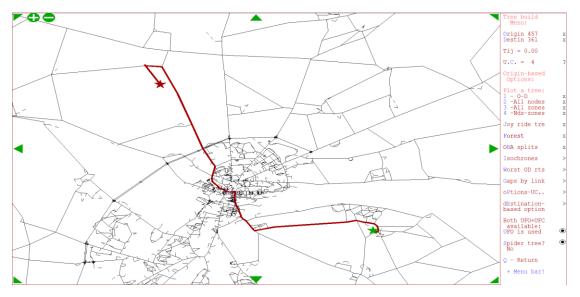
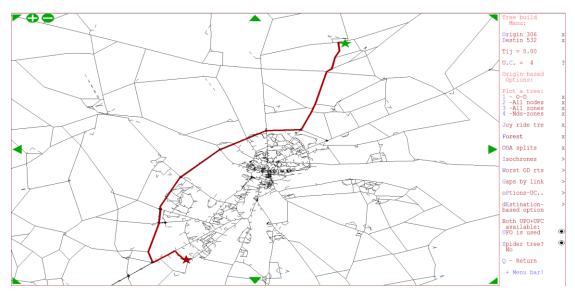



Figure 5-15 Routeing Check – Heighington to North Carlton

Figure 5-16 Routeing Check – Welton to South Hykeham

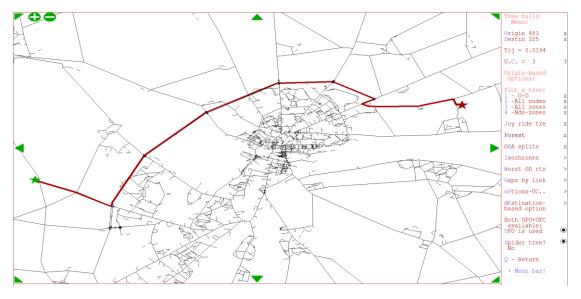
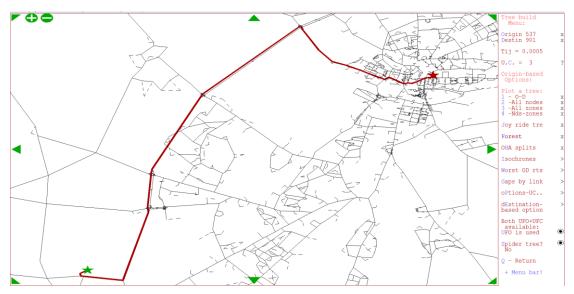



Figure 5-17 Routeing Check – Doddington to Reepham

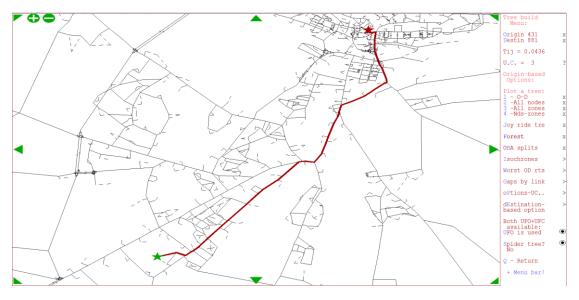
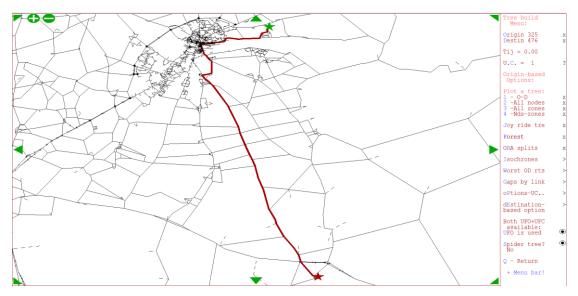



Figure 5-19 Routeing Check – North Hykeham to City Centre

Figure 5-20 Routeing Check – Cherry Willingham to Sleaford

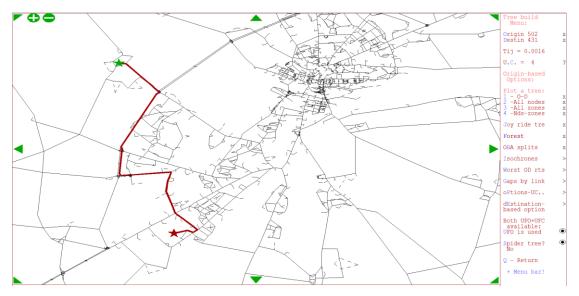
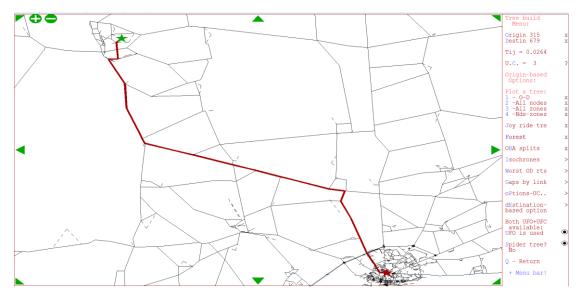



Figure 5-21 Routeing Check – Skellingthorpe to North Hykeham

Figure 5-22 Routeing Check – Gainsborough to City Centre

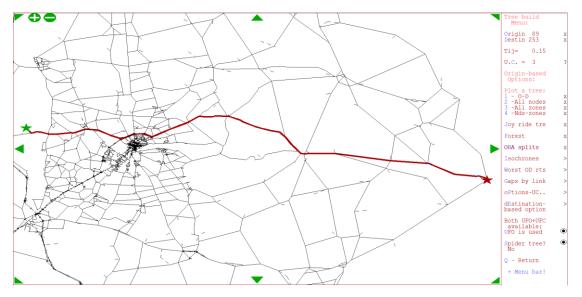
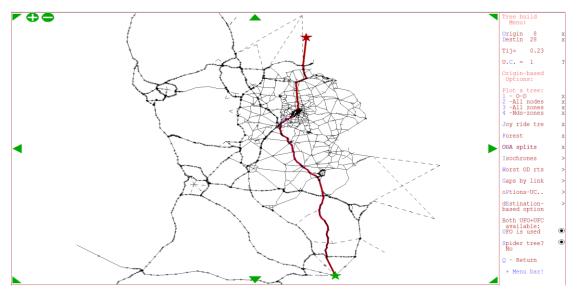



Figure 5-23 Routeing Check – East Drayton to Skegness

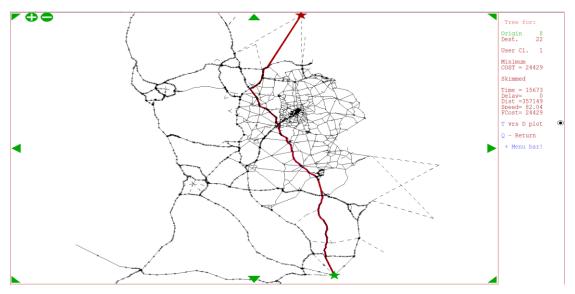
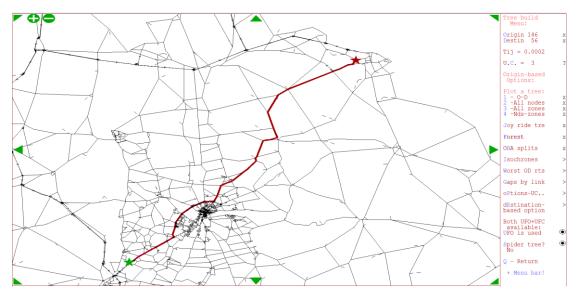



Figure 5-25 Routeing Check – London to North East

Figure 5-26 Routeing Check – A46 (north east of Newark) to Grimsby

6 Test 5 – Link Consistency Tests

6.1 Background

The purpose of this test is to check that the network link types are consistent along a road and in both directions, to confirm that network lengths and coded link capacities are appropriately coded. The test should confirm that the network structure has been constructed in accordance with the model specification report.

6.2 Information required

The following information should be required for the purpose of the tests:

- Map showing link types for each direction of a link. Changes in link types along the same stretch of road should be compared with source data. Map of cruise speed as derived from Trafficmaster Journey time data will be used to determine the appropriate link type (i.e. speed-flow curve).
- Maps showing the extent of the types of speed-flow curves and capacities used in the simulation area. For buffer network, the assumption of unlimited capacity with speed taken from the Trafficmaster JT data will be used.
- Tables showing the SATURN link lengths compared with crow-fly distance; and tables showing SATURN link lengths compared with GIS data.

6.3 Acceptance Criteria

For the core modelled area:

- There should be no change in link type between directions, unless this can be justified by difference in number of lanes, speed limit;
- Dual carriageway should have the same link type link both direction, except where indicated by difference in speed limit, number of lanes, etc. from source data; and
- Change in link type should be consistent providing changes in speed limit when moving toward town centre from rural area.

For the non-core modelled area:

• If any significant findings arise from the checks, a series of mitigation measures will be implemented either at this stage or during calibration/validation stage.

6.4 Summary

Table 6-1 below provides a summary of the difference between coded link lengths from SATURN compared to crow-fly distance.

It is noted that all the –ve (i.e. coded length < crow-fly distance) are due to the fact that the coded length is input as integer whereas the crow-fly distance is calculated based on XY coordinates of the nodes, i.e. not rounded to integer.

Coded Length	Less than	n Between (ve for Crow Fly > Coded Length)						Greater than		
Ŭ	20%	20 & 15%	15 & 10%	10 & 5%	5 & 0%	0 & 5%	5 & 10%	10 & 15%	15 & 20%	> 20%
0- 500m	0	0	0	1	1138	3441	401	174	121	125
500- 1000m	0	0	0	0	98	1241	91	56	29	51
1000- 2000m	0	0	0	0	32	1079	167	59	32	34
2000- 5000m	0	0	0	0	7	857	264	78	38	41
5000-10000m	0	0	0	0	3	303	148	49	32	24
10000-20000m	0	0	0	0	0	99	64	18	10	6
Over 20000m	0	0	0	0	0	2	8	4	0	2
Total	0	0	0	1	1278	7022	1143	438	262	283

Table 6-1 Coded Link Length vs. Crow-Fly Distance Summary

7 Test 6 – Flat Matrix Assignment Test

7.1 Background

The purpose of this test is to ensure that the model assignment with a flat matrix produce plausible results in terms of routeing and also to investigate whether or not locations with excessively high delays are as a result of significant flows or due to coding error.

7.2 Information required

Plots identifying key strategic places in the core modelled area used to check routeing with additional bandwidth plots showing the magnitude of traffic flow on links in the core modelled area and links where high delays occur.

7.3 Acceptance Criteria

Paths should show plausible routeings, in particular for areas that are unexpectedly avoided or unexpectedly attractive on the unloaded network.

Differences in routeings between the principle vehicle groups (arising from banned links and turns) should be justified through reference to the source data.

Traffic flow bandwidth plots should show key routes in the network carrying more traffic than other routes.

Delay plots should show congestion occurring on key routes with significant traffic flows particularly in urban areas.

7.4 Summary

Figures 7-1, 7-3 and 7-5 are bandwidth plots which show the magnitude of traffic flow on links across the GLTM study area. The plots suggest the magnitude between the key strategic links and more minor links is correct with routes such as the A46 and A15 carrying more traffic than the B- and C- rural roads.

Figures 7-2, 7-4 and 7-6 highlight nodes were significant delay occurs (the radius of the circles being proportional to the level of delay). These indicate that the majority of delay is occurring at expected locations in the urban areas and city centre.

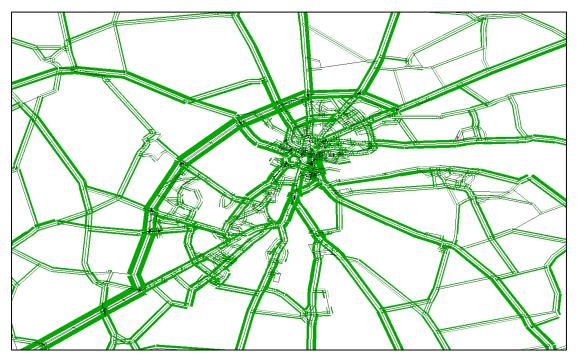


Figure 7-2 Flat Matrix Junction Delay Plot – AM Peak

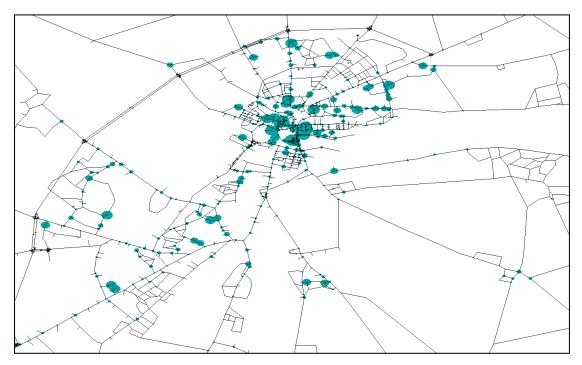


Figure 7-3 Flat Matrix Flow Plot – Inter Peak

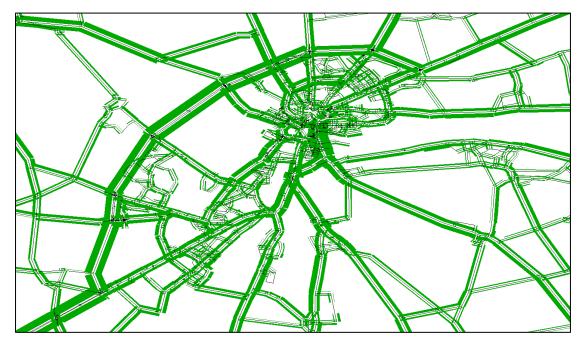


Figure 7-4 Flat Matrix Junction Delay Plot – Inter Peak

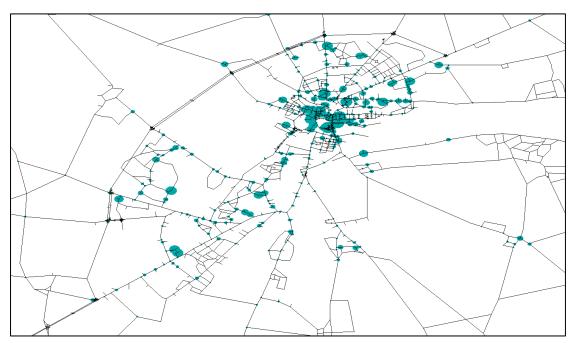
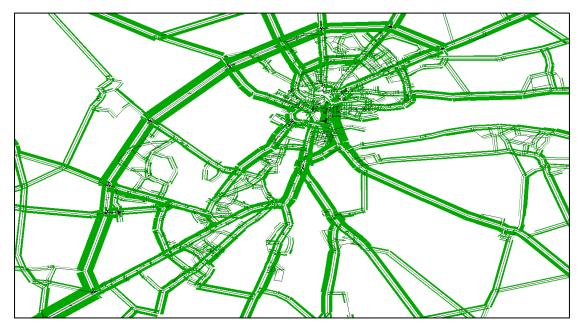
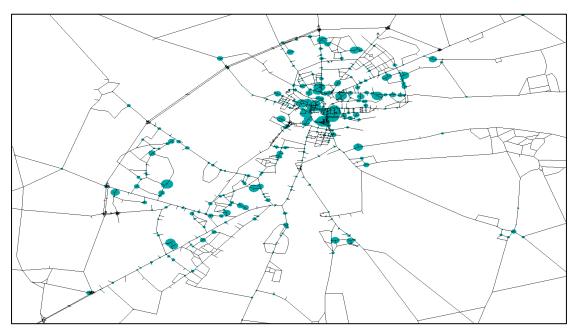
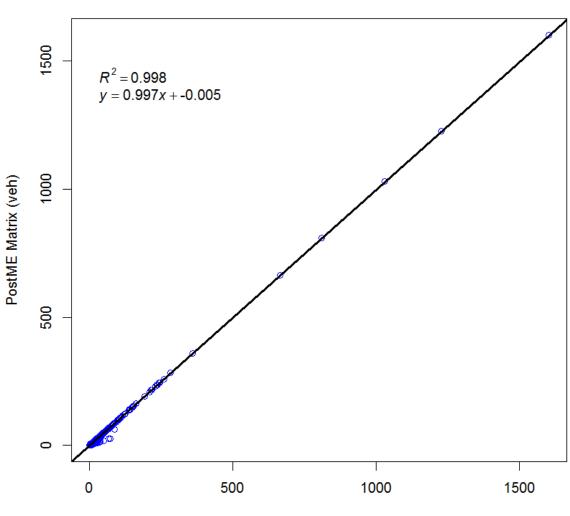
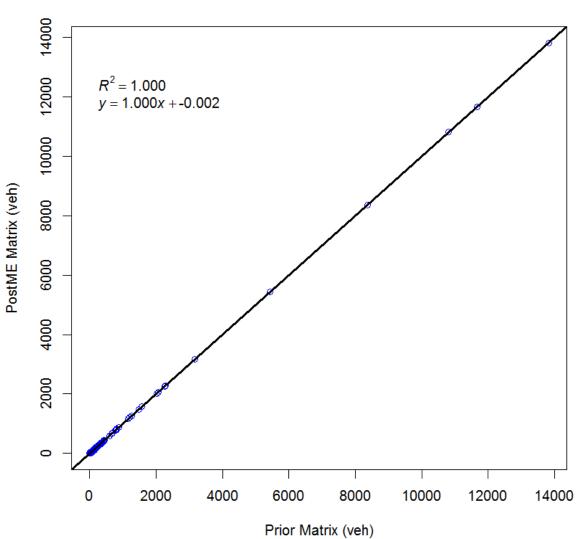


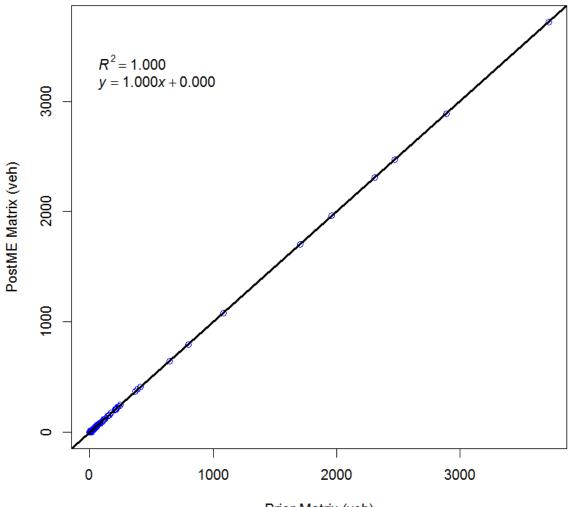
Figure 7-5 Flat Matrix Flow Plot – PM Peak

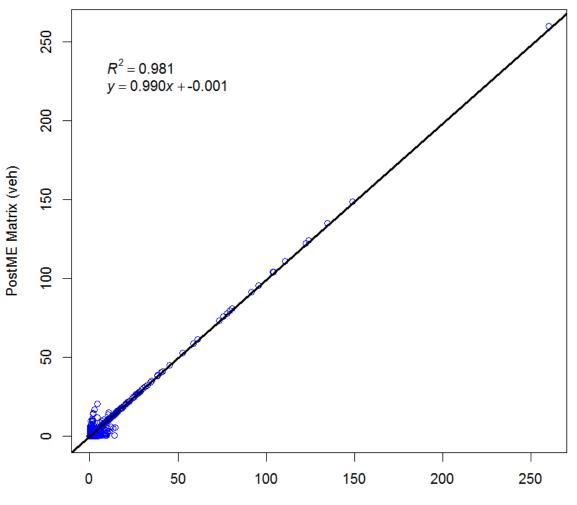

Figure 7-6 Flat Matrix Junction Delay Plot – PM Peak

Zonal Cell Values – AM Peak

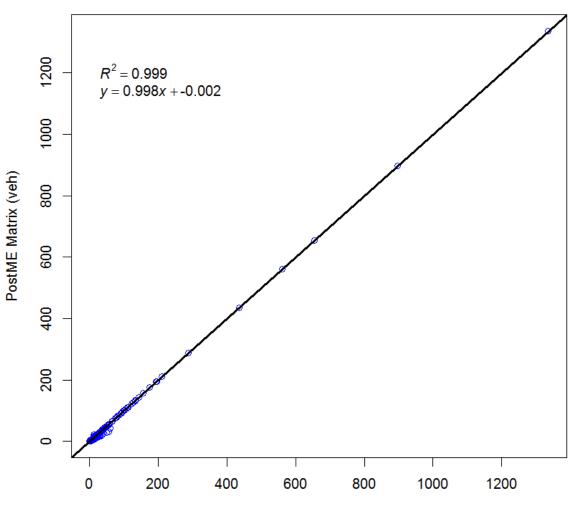
Business AM


Commute AM

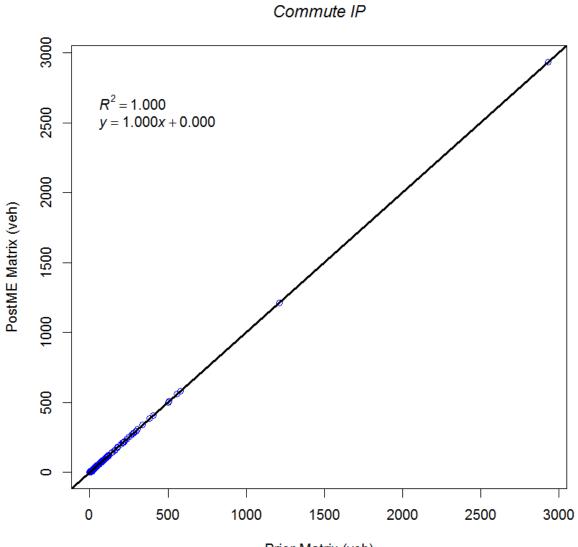
Other AM


5000 $R^2 = 1.000$ y = 1.000x + -0.002 4000 PostME Matrix (veh) 3000 2000 1000 0 Т Т 1000 0 2000 3000 4000 5000

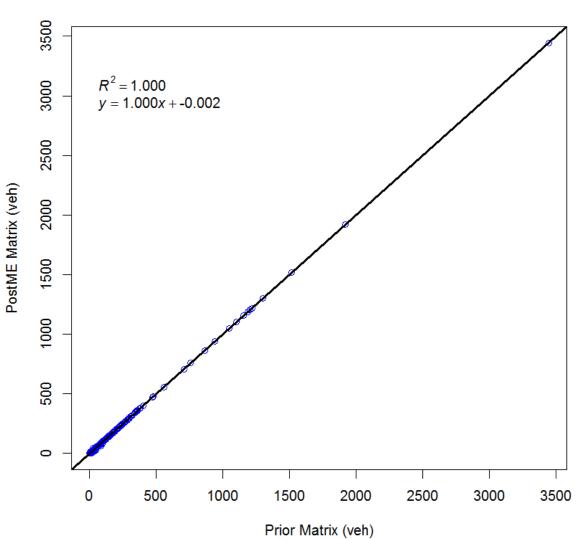
Prior Matrix (veh)



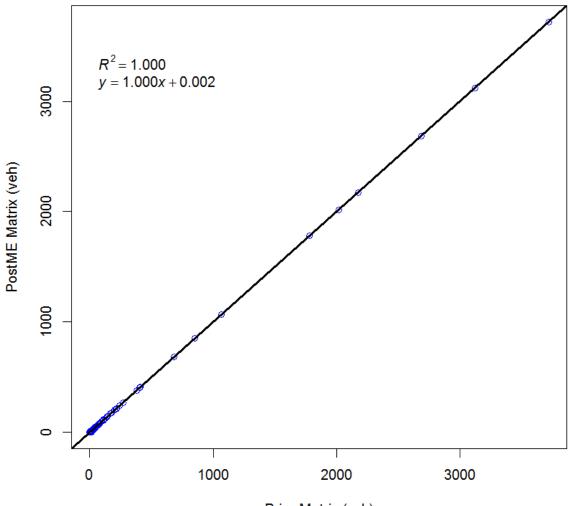
HGV AM



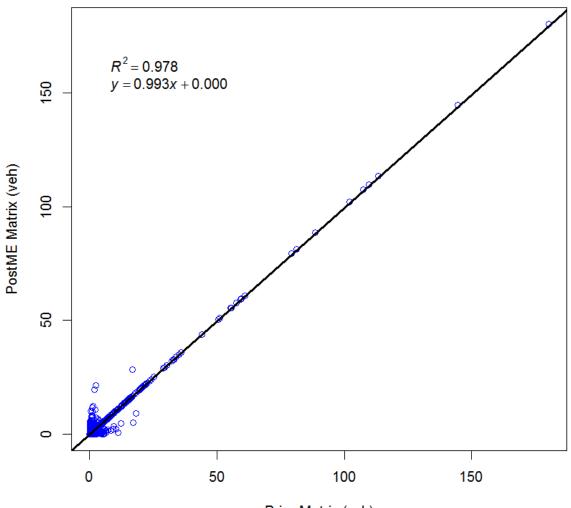
Prior Matrix (veh)


Zonal Cell Values – Inter Peak

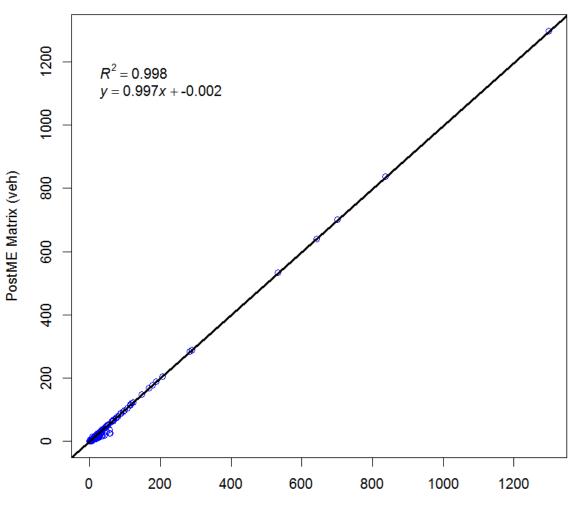
Business IP

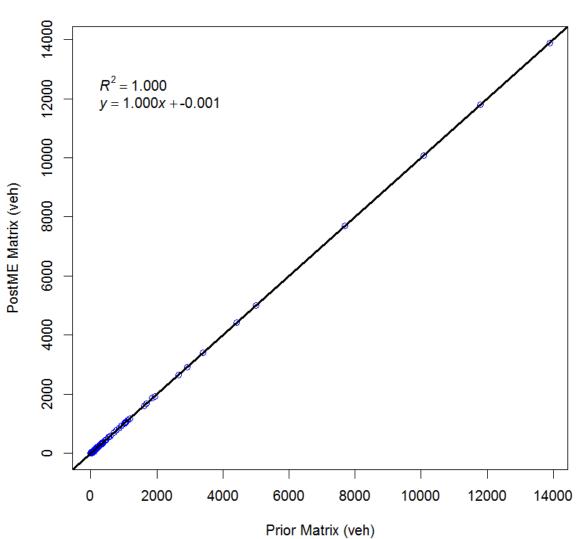


Prior Matrix (veh)



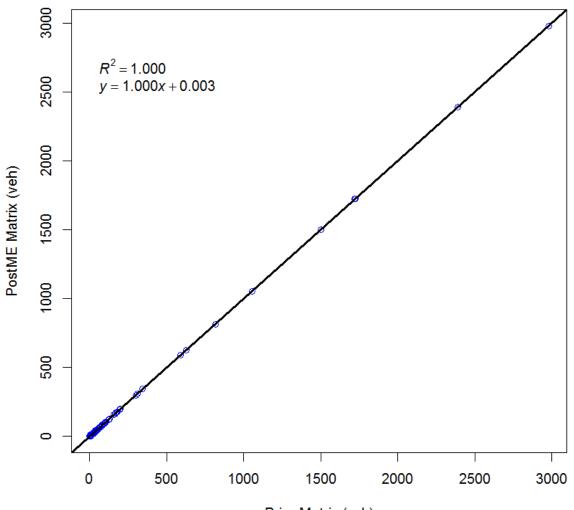
Other IP



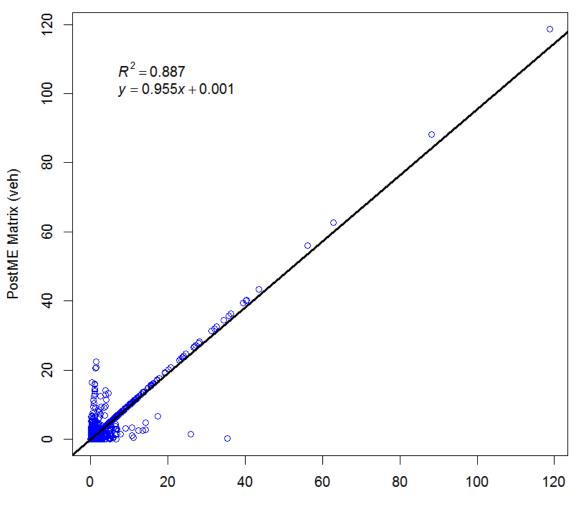


Zonal Cell Values – PM Peak

Business PM

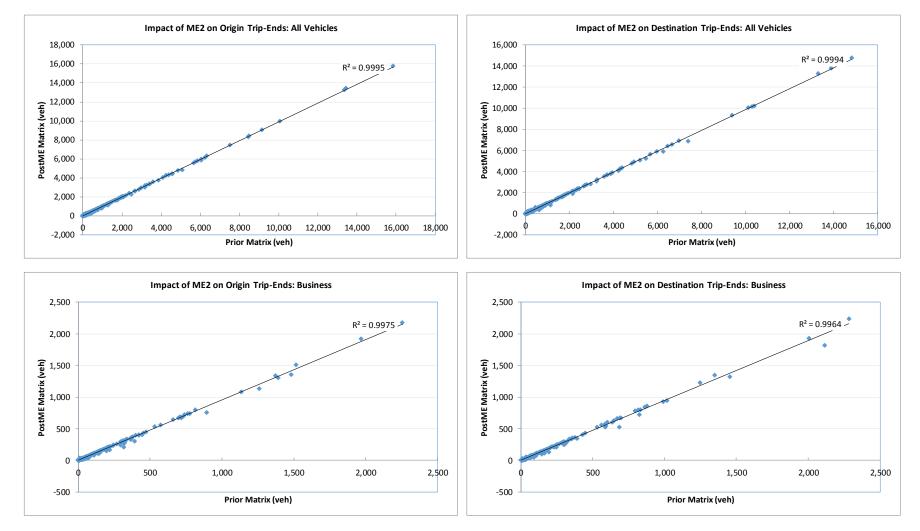


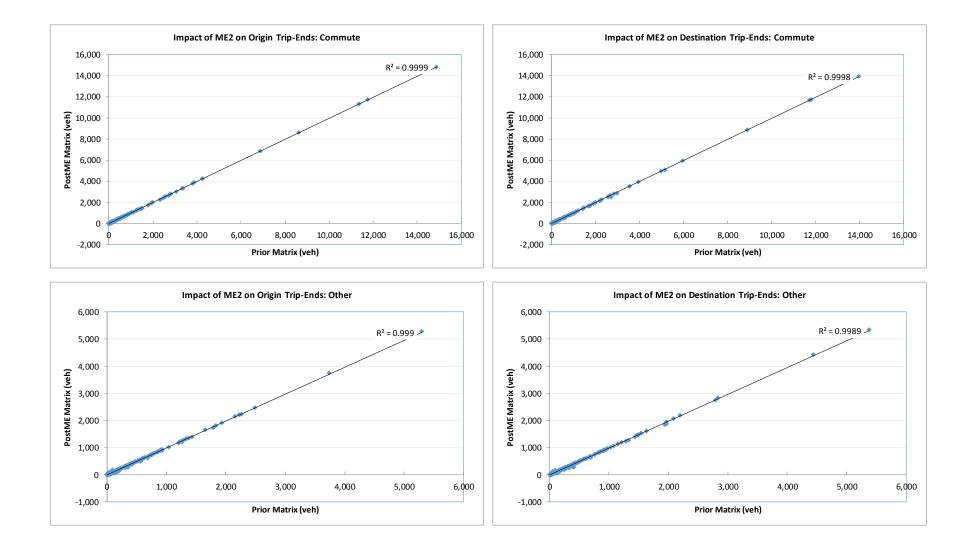
Commute PM

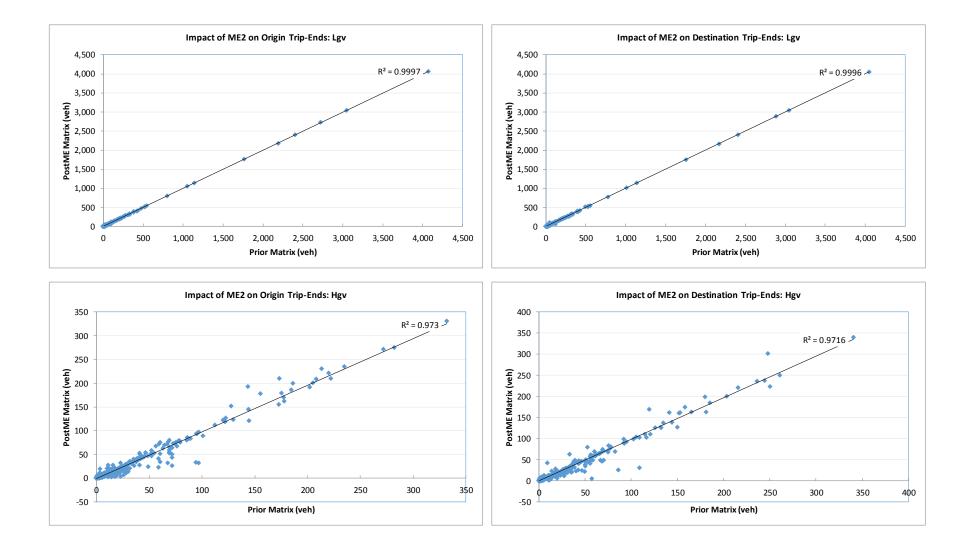

Other PM

LGV PM

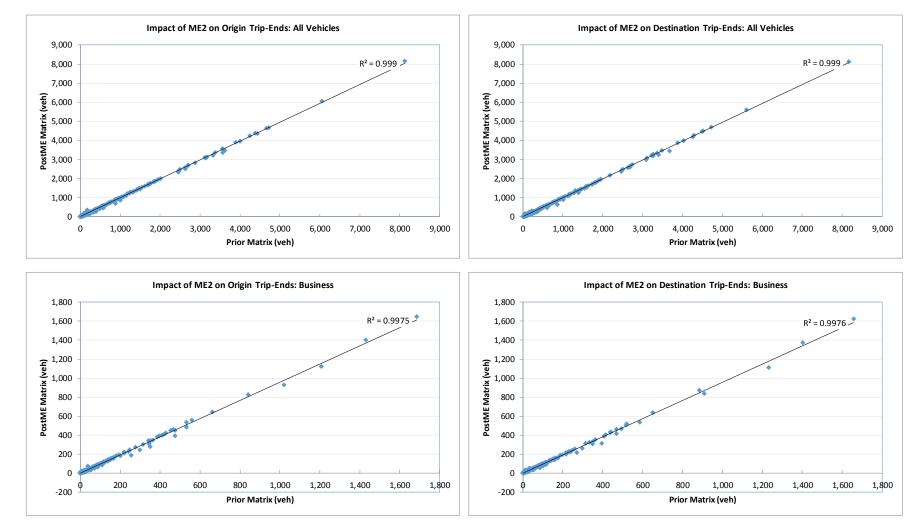
Prior Matrix (veh)

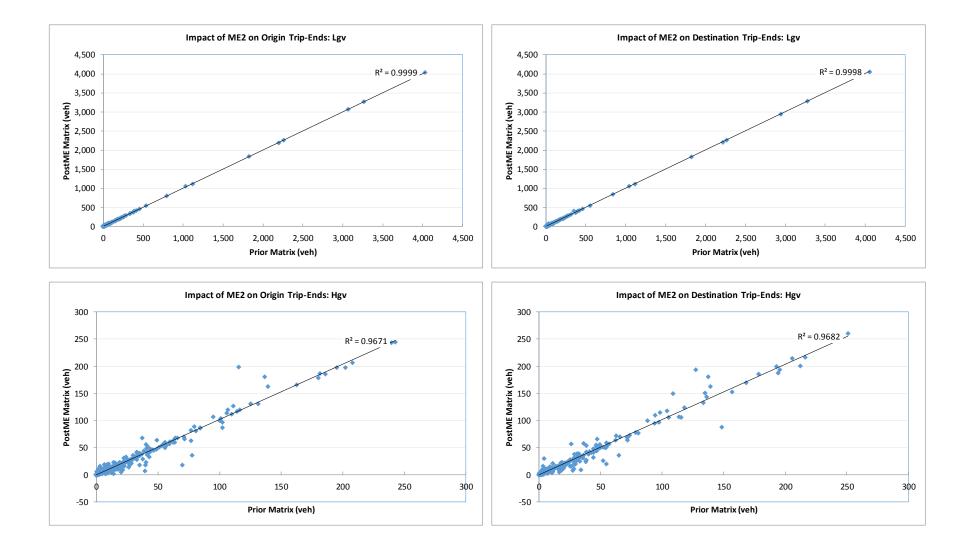

HGV PM



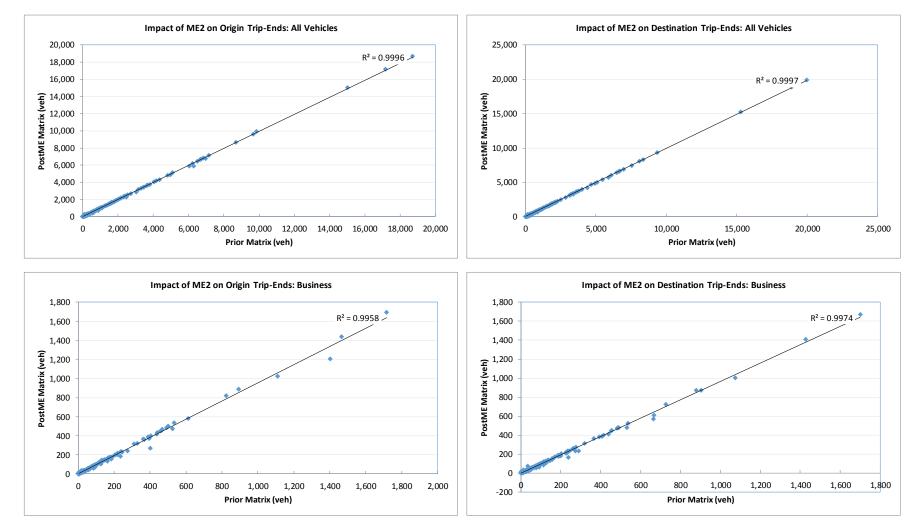

Prior Matrix (veh)

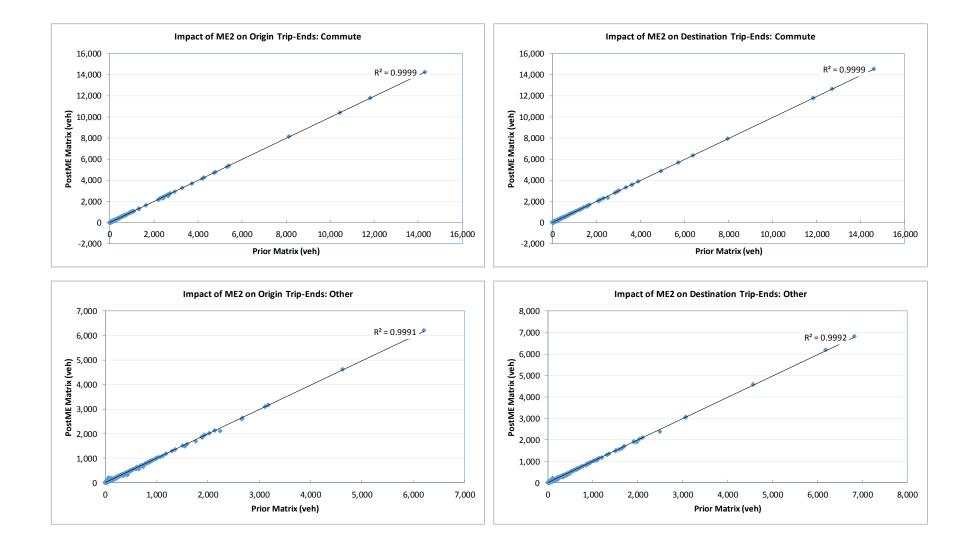
Page **15** of **39**

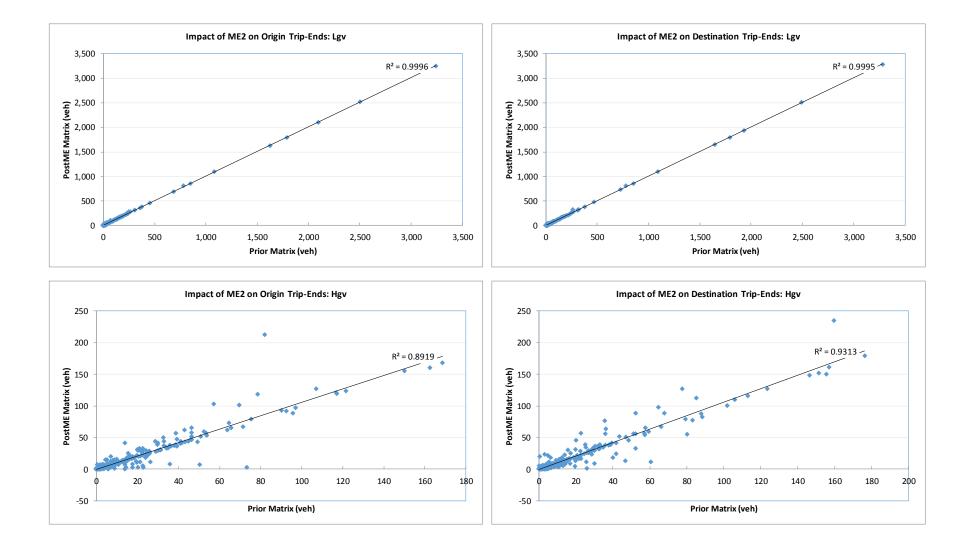

Zonal Trip Ends – AM Peak

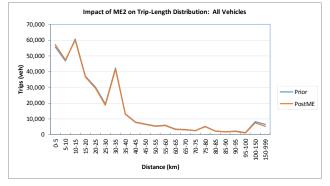


Zonal Trip Ends – Inter Peak




GLTM Effects of Matrix Estimation



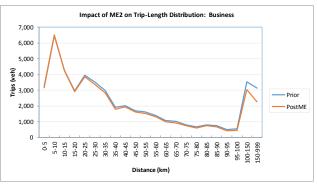


Trip Length Distribution Comparison – AM Peak

All Vehicle	A	JI	٧	el	hi	cl	e
-------------	---	----	---	----	----	----	---

All Vehicles																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	5	55,736	46,771	60,611	37,049	29,976	19,282	42,229	13,281	7,989	6,747	5,360	5,839	3,455	3,326	2,503	5,210	2,230	1,804	2,169	1,228	8,132	6,568
PostME Trips (veh)	5	57,291	47,528	60,018	36,617	29,222	18,515	41,548	12,870	7,711	6,537	5,132	5,632	3,268	3,087	2,370	5,059	2,130	1,696	2,039	1,099	7,409	5,112
Prior veh.km	0	179,715	348,901	765,921	673,677	674,466	523,169	1,408,880	491,630	336,371	320,494	281,244	338,731	215,161	224,469	180,724	406,606	182,782	157,869	202,591	119,651	998,182	1,484,948
PostME veh.km	0	183,787	354,234	758,303	665,872	657,522	502,145	1,386,714	476,291	324,525	310,499	269,250	326,797	203,461	208,463	171,075	394,823	174,573	148,397	190,624	107,212	907,574	1,137,783

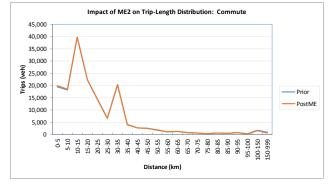
Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengtl	%Diff	
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	/0DIII
1	0	0	5	5	0	0	0.0	0.0	#DIV/0!
2	0	5	55,736	57,291	179,715	183,787	3.2	3.2	-0.5%
3	5	10	46,771	47,528	348,901	354,234	7.5	7.5	-0.1%
4	10	15	60,611	60,018	765,921	758,303	12.6	12.6	0.0%
5	15	20	37,049	36,617	673,677	665,872	18.2	18.2	0.0%
6	20	25	29,976	29,222	674,466	657,522	22.5	22.5	0.0%
7	25	30	19,282	18,515	523,169	502,145	27.1	27.1	0.0%
8	30	35	42,229	41,548	1,408,880	1,386,714	33.4	33.4	0.0%
9	35	40	13,281	12,870	491,630	476,291	37.0	37.0	0.0%
10	40	45	7,989	7,711	336,371	324,525	42.1	42.1	0.0%
11	45	50	6,747	6,537	320,494	310,499	47.5	47.5	0.0%
12	50	55	5,360	5,132	281,244	269,250	52.5	52.5	0.0%
13	55	60	5,839	5,632	338,731	326,797	58.0	58.0	0.0%
14	60	65	3,455	3,268	215,161	203,461	62.3	62.3	0.0%
15	65	70	3,326	3,087	224,469	208,463	67.5	67.5	0.1%
16	70	75	2,503	2,370	180,724	171,075	72.2	72.2	0.0%
17	75	80	5,210	5,059	406,606	394,823	78.0	78.0	0.0%
18	80	85	2,230	2,130	182,782	174,573	82.0	82.0	0.0%
19	85	90	1,804	1,696	157,869	148,397	87.5	87.5	0.0%
20	90	95	2,169	2,039	202,591	190,624	93.4	93.5	0.1%
21	95	100	1,228	1,099	119,651	107,212	97.4	97.5	0.1%
22	100	150	8,132	7,409	998,182	907,574	122.7	122.5	-0.2%
23	150	999	6,568	5,112	1,484,948	1,137,783	226.1	222.6	-1.6%
Total			367,498	361,890	10,516,184	9,859,924	28.62	27.25	-4.8%



	Prior	PostME
Mean	28.62	27.25
SD	35.66	32.91

Business	

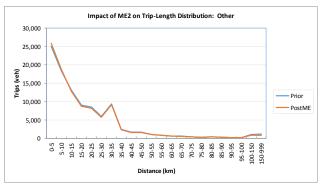
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	0	3,154	6,473	4,245	2,955	3,961	3,512	2,989	1,901	2,024	1,682	1,605	1,400	1,067	1,014	802	680	794	734	488	540	3,539	3,141
PostME Trips (veh)	0	3,237	6,520	4,215	2,914	3,842	3,360	2,843	1,795	1,943	1,622	1,523	1,328	994	914	744	603	735	659	417	445	3,042	2,252
Prior veh.km	0	12,531	46,296	55,037	52,106	88,665	95,767	97,241	71,563	85,282	79,893	84,246	80,992	66,705	68,292	58,095	52,794	65,175	64,295	45,130	52,692	437,454	711,870
PostME veh.km	0	12,763	46,643	54,607	51,332	85,993	91,610	92,456	67,596	81,846	77,085	79,918	76,855	62,115	61,565	53,942	46,797	60,317	57,725	38,571	43,447	374,825	504,384


Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Length (km)		%Diff	1	
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	/ 6 Diii		
1	0	0	0	0	0	0	0.0	0.0	#DIV/0!		1
2	0	5	3,154	3,237	12,531	12,763	4.0	3.9	-0.7%		6
3	5	10	6,473	6,520	46,296	46,643	7.2	7.2	0.0%		
4	10	15	4,245	4,215	55,037	54,607	13.0	13.0	-0.1%		
5	15	20	2,955	2,914	52,106	51,332	17.6	17.6	-0.1%		Ê.
6	20	25	3,961	3,842	88,665	85,993	22.4	22.4	0.0%		Š
7	25	30	3,512	3,360	95,767	91,610	27.3	27.3	0.0%		Trips (veh)
8	30	35	2,989	2,843	97,241	92,456	32.5	32.5	0.0%		
9	35	40	1,901	1,795	71,563	67,596	37.6	37.7	0.0%		
10	40	45	2,024	1,943	85,282	81,846	42.1	42.1	0.0%		
11	45	50	1,682	1,622	79,893	77,085	47.5	47.5	0.0%		
12	50	55	1,605	1,523	84,246	79,918	52.5	52.5	0.0%		
13	55	60	1,400	1,328	80,992	76,855	57.8	57.9	0.0%		
14	60	65	1,067	994	66,705	62,115	62.5	62.5	0.0%		
15	65	70	1,014	914	68,292	61,565	67.3	67.4	0.1%		
16	70	75	802	744	58,095	53,942	72.5	72.5	0.0%		
17	75	80	680	603	52,794	46,797	77.6	77.5	-0.1%		
18	80	85	794	735	65,175	60,317	82.0	82.0	0.0%		
19	85	90	734	659	64,295	57,725	87.6	87.6	0.0%		Mean
20	90	95	488	417	45,130	38,571	92.4	92.4	0.0%		SD
21	95	100	540	445	52,692	43,447	97.5	97.6	0.1%		
22	100	150	3,539	3,042	437,454	374,825	123.6	123.2	-0.3%	ge 26 c	f 30
23	150	999	3,141	2,252	711,870	504,384	226.6	224.0	-1.2%	ye 20 C	. 33
Total			48,702	45,948	2,472,120	2,122,392	50.76	46.19	-9.0%		

	Prior	PostME				
Mean	50.76	46.19				
SD	59.66	54.08				

Commute																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	1	19,560	18,240	39,850	22,380	14,416	6,783	20,500	4,077	2,709	2,584	1,867	1,159	1,289	771	648	333	637	444	807	240	1,723	1,023
PostME Trips (veh)	1	19,964	18,543	39,731	22,292	14,176	6,546	20,286	3,972	2,629	2,540	1,807	1,115	1,247	724	622	302	619	415	784	214	1,596	686
Prior veh.km	0	64,318	139,444	506,620	414,943	326,554	183,913	686,100	153,210	114,521	122,116	98,473	67,135	79,829	51,999	46,714	25,875	52,178	38,800	75,943	23,392	206,217	243,331
PostME veh.km	0	65,437	141,676	504,954	413,314	321,147	177,420	679,105	149,301	111,119	120,046	95,287	64,610	77,195	48,894	44,846	23,398	50,695	36,260	73,864	20,846	190,244	160,236

Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Length	%Diff	
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII
1	0	0	1	1	0	0	0.0	0.0	#DIV/0!
2	0	5	19,560	19,964	64,318	65,437	3.3	3.3	-0.3%
3	5	10	18,240	18,543	139,444	141,676	7.6	7.6	-0.1%
4	10	15	39,850	39,731	506,620	504,954	12.7	12.7	0.0%
5	15	20	22,380	22,292	414,943	413,314	18.5	18.5	0.0%
6	20	25	14,416	14,176	326,554	321,147	22.7	22.7	0.0%
7	25	30	6,783	6,546	183,913	177,420	27.1	27.1	0.0%
8	30	35	20,500	20,286	686,100	679,105	33.5	33.5	0.0%
9	35	40	4,077	3,972	153,210	149,301	37.6	37.6	0.0%
10	40	45	2,709	2,629	114,521	111,119	42.3	42.3	0.0%
11	45	50	2,584	2,540	122,116	120,046	47.3	47.3	0.0%
12	50	55	1,867	1,807	98,473	95,287	52.7	52.7	0.0%
13	55	60	1,159	1,115	67,135	64,610	57.9	57.9	0.0%
14	60	65	1,289	1,247	79,829	77,195	61.9	61.9	0.0%
15	65	70	771	724	51,999	48,894	67.5	67.5	0.1%
16	70	75	648	622	46,714	44,846	72.1	72.1	0.0%
17	75	80	333	302	25,875	23,398	77.6	77.6	0.0%
18	80	85	637	619	52,178	50,695	82.0	82.0	0.0%
19	85	90	444	415	38,800	36,260	87.4	87.4	0.0%
20	90	95	807	784	75,943	73,864	94.1	94.2	0.1%
21	95	100	240	214	23,392	20,846	97.5	97.6	0.1%
22	100	150	1,723	1,596	206,217	190,244	119.7	119.2	-0.4%
23	150	999	1,023	686	243,331	160,236	237.9	233.6	-1.8%
Total			162,041	160,809	3,721,626	3,569,894	22.97	22.20	-3.3%

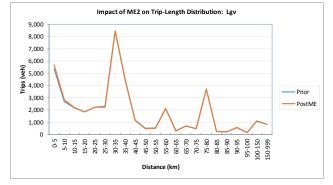


	Prior	PostME
Mean	22.97	22.20
SD	26.19	23.65

Other	
Dietanco	Т

Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	2	25,078	18,296	13,245	9,009	8,560	5,977	9,340	2,458	1,714	1,682	1,080	841	632	595	400	287	442	308	206	194	1,040	1,120
PostME Trips (veh)	2	25,899	18,700	12,907	8,760	8,238	5,697	9,132	2,328	1,639	1,628	1,023	802	591	538	377	254	421	279	181	167	886	828
Prior veh.km	0	81,133	135,811	163,168	158,525	190,299	163,200	314,108	92,817	72,149	80,464	56,231	48,596	39,447	40,095	28,992	22,226	36,113	26,914	18,983	18,903	127,496	253,660
PostME veh.km	0	83,332	138,778	158,867	154,004	183,127	155,560	307,338	87,991	68,984	77,899	53,255	46,351	36,865	36,248	27,280	19,706	34,327	24,453	16,759	16,287	108,020	184,984

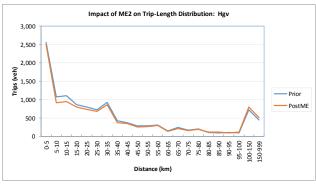
Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	%Diff		
Ballu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	70 DIII		
1	0	0	2	2	0	0	0.0	0.0	#DIV/0!		1
2	0	5	25,078	25,899	81,133	83,332	3.2	3.2	-0.5%		
3	5	10	18,296	18,700	135,811	138,778	7.4	7.4	0.0%		2
4	10	15	13,245	12,907	163,168	158,867	12.3	12.3	-0.1%		2
5	15	20	9,009	8,760	158,525	154,004	17.6	17.6	-0.1%		Ê
6	20	25	8,560	8,238	190,299	183,127	22.2	22.2	0.0%		Trips (veh)
7	25	30	5,977	5,697	163,200	155,560	27.3	27.3	0.0%		rips
8	30	35	9,340	9,132	314,108	307,338	33.6	33.7	0.1%		F 1
9	35	40	2,458	2,328	92,817	87,991	37.8	37.8	0.1%		
10	40	45	1,714	1,639	72,149	68,984	42.1	42.1	0.0%		
11	45	50	1,682	1,628	80,464	77,899	47.8	47.8	0.0%		
12	50	55	1,080	1,023	56,231	53,255	52.1	52.1	-0.1%		
13	55	60	841	802	48,596	46,351	57.8	57.8	0.0%		
14	60	65	632	591	39,447	36,865	62.4	62.4	0.0%		
15	65	70	595	538	40,095	36,248	67.3	67.4	0.1%		
16	70	75	400	377	28,992	27,280	72.4	72.4	0.0%		
17	75	80	287	254	22,226	19,706	77.5	77.5	-0.1%		
18	80	85	442	421	36,113	34,327	81.6	81.6	0.0%		
19	85	90	308	279	26,914	24,453	87.5	87.5	0.0%	1	Mean
20	90	95	206	181	18,983	16,759	92.4	92.4	0.0%	\$	SD
21	95	100	194	167	18,903	16,287	97.3	97.4	0.0%	-	
22	100	150	1,040	886	127,496	108,020	122.6	121.9	-0.5%	no 77 or	f 20
23	150	999	1,120	828	253,660	184,984	226.4	223.4	-1.3%	ge 27 c	. 33
Total			102,504	101,277	2,169,333	2,020,415	21.16	19.95	-5.7%		


	Prior	PostME
Mean	21.16	19.95
SD	30.05	27.21

GLTM Effects of Matrix Estimation

LG/

Lgv																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	2	5,383	2,685	2,167	1,839	2,237	2,289	8,475	4,425	1,172	513	526	2,125	316	707	483	3,708	253	224	566	158	1,102	841
PostME Trips (veh)	2	5,696	2,846	2,218	1,851	2,227	2,234	8,429	4,404	1,152	493	509	2,093	297	694	471	3,705	239	222	559	156	1,088	837
Prior veh.km	0	15,103	19,227	27,301	32,873	50,871	60,797	281,190	158,490	48,779	24,359	27,527	123,789	19,724	47,934	34,667	290,000	20,767	19,629	53,052	15,435	136,829	182,201
PostME veh.km	0	15,873	20,344	27,924	33,067	50,615	59,273	279,694	157,726	47,935	23,430	26,635	121,937	18,540	47,085	33,770	289,758	19,652	19,418	52,418	15,200	135,360	181,481

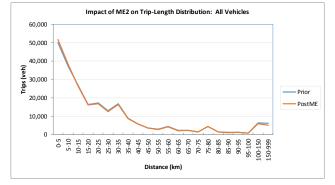

Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengtl	h (km)	%Diff
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII
1	0	0	2	2	0	0	0.0	0.0	#DIV/0!
2	0	5	5,383	5,696	15,103	15,873	2.8	2.8	-0.7%
3	5	10	2,685	2,846	19,227	20,344	7.2	7.1	-0.2%
4	10	15	2,167	2,218	27,301	27,924	12.6	12.6	-0.1%
5	15	20	1,839	1,851	32,873	33,067	17.9	17.9	0.0%
6	20	25	2,237	2,227	50,871	50,615	22.7	22.7	0.0%
7	25	30	2,289	2,234	60,797	59,273	26.6	26.5	-0.1%
8	30	35	8,475	8,429	281,190	279,694	33.2	33.2	0.0%
9	35	40	4,425	4,404	158,490	157,726	35.8	35.8	0.0%
10	40	45	1,172	1,152	48,779	47,935	41.6	41.6	0.0%
11	45	50	513	493	24,359	23,430	47.5	47.5	0.0%
12	50	55	526	509	27,527	26,635	52.4	52.4	0.0%
13	55	60	2,125	2,093	123,789	121,937	58.3	58.3	0.0%
14	60	65	316	297	19,724	18,540	62.5	62.5	0.0%
15	65	70	707	694	47,934	47,085	67.8	67.8	0.0%
16	70	75	483	471	34,667	33,770	71.7	71.7	0.0%
17	75	80	3,708	3,705	290,000	289,758	78.2	78.2	0.0%
18	80	85	253	239	20,767	19,652	82.2	82.2	0.0%
19	85	90	224	222	19,629	19,418	87.5	87.5	0.0%
20	90	95	566	559	53,052	52,418	93.7	93.7	0.0%
21	95	100	158	156	15,435	15,200	97.6	97.6	0.0%
22	100	150	1,102	1,088	136,829	135,360	124.1	124.4	0.2%
23	150	999	841	837	182,201	181,481	216.6	216.9	0.1%
Fotal			42,194	42,419	1,690,545	1,677,137	40.07	39.54	-1.3%

	Prior	PostME
Mean	40.06	39.54
SD	38.38	38.39

Hgv				-																			
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	1	2,561	1,077	1,104	866	802	722	925	421	370	287	283	313	152	239	170	201	104	94	102	95	728	443
PostME Trips (veh)	1	2,495	919	948	800	740	678	858	370	347	253	271	293	140	217	156	194	116	121	97	117	797	510
Prior veh.km	0	6,629	8,123	13,795	15,229	18,076	19,492	30,241	15,550	15,640	13,662	14,767	18,218	9,457	16,149	12,257	15,712	8,550	8,230	9,483	9,228	90,187	93,887
PostME veh.km	0	6,382	6,793	11,952	14,154	16,640	18,281	28,122	13,677	14,641	12,039	14,156	17,044	8,745	14,671	11,238	15,164	9,582	10,542	9,011	11,431	99,125	106,698

Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	%Diff
Бапо	from	to	Prior	PostME	Prior	PostME	Prior	PostME	%DIII
1	0	0	1	1	0	0	0.0	0.0	#DIV/0!
2	0	5	2,561	2,495	6,629	6,382	2.6	2.6	-1.2%
3	5	10	1,077	919	8,123	6,793	7.5	7.4	-2.0%
4	10	15	1,104	948	13,795	11,952	12.5	12.6	0.9%
5	15	20	866	800	15,229	14,154	17.6	17.7	0.5%
6	20	25	802	740	18,076	16,640	22.5	22.5	-0.1%
7	25	30	722	678	19,492	18,281	27.0	27.0	-0.1%
8	30	35	925	858	30,241	28,122	32.7	32.8	0.2%
9	35	40	421	370	15,550	13,677	37.0	37.0	0.0%
10	40	45	370	347	15,640	14,641	42.3	42.2	-0.1%
11	45	50	287	253	13,662	12,039	47.6	47.6	0.0%
12	50	55	283	271	14,767	14,156	52.2	52.3	0.0%
13	55	60	313	293	18,218	17,044	58.1	58.2	0.0%
14	60	65	152	140	9,457	8,745	62.3	62.3	-0.1%
15	65	70	239	217	16,149	14,671	67.5	67.6	0.2%
16	70	75	170	156	12,257	11,238	72.2	72.2	0.0%
17	75	80	201	194	15,712	15,164	78.0	78.1	0.1%
18	80	85	104	116	8,550	9,582	82.4	82.3	-0.1%
19	85	90	94	121	8,230	10,542	87.3	87.2	-0.1%
20	90	95	102	97	9,483	9,011	92.7	92.6	-0.1%
21	95	100	95	117	9,228	11,431	97.1	97.6	0.4%
22	100	150	728	797	90,187	99,125	123.8	124.4	0.5%
23	150	999	443	510	93,887	106,698	212.0	209.3	-1.3%
otal			12,058	11,437	462,562	470,087	38.36	41.10	7.1%

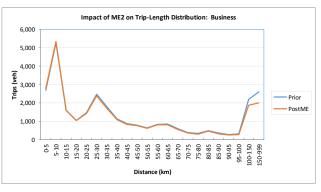
	Prior	PostME
Mean	38.36	41.10
SD	48.41	51.29


28 of 39

Trip Length Distribution Comparison – Inter Peak

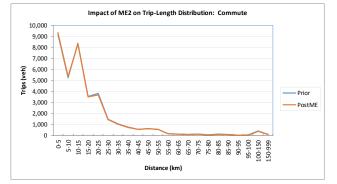
All Vehicle

All Vehicles																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	7	50,000	37,375	27,021	16,382	17,342	12,895	16,736	8,991	5,814	3,652	2,874	4,363	2,280	2,305	1,510	4,474	1,455	1,190	1,256	862	6,315	6,129
PostME Trips (veh)	7	51,862	38,404	26,626	16,090	16,840	12,504	16,377	8,819	5,712	3,610	2,818	4,310	2,182	2,234	1,470	4,411	1,420	1,121	1,190	824	5,887	5,181
Prior veh.km	0	157,172	278,257	344,348	289,903	387,865	350,069	550,065	330,678	243,675	174,151	150,367	253,497	142,319	155,240	109,178	349,369	119,412	104,144	116,805	83,992	784,432	1,405,673
PostME veh.km	0	162,306	285,572	339,361	284,571	376,652	339,441	538,500	324,267	239,341	172,163	147,382	250,392	136,139	150,552	106,262	344,461	116,524	98,077	110,691	80,407	730,765	1,172,965


Band	Distance (km)		Trips	(veh)	Trip.	kms	Length	n (km)	%Diff
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	70 DIII
1	0	0	7	7	0	0	0.0	0.0	#DIV/0!
2	0	5	50,000	51,862	157,172	162,306	3.1	3.1	-0.4%
3	5	10	37,375	38,404	278,257	285,572	7.4	7.4	-0.1%
4	10	15	27,021	26,626	344,348	339,361	12.7	12.7	0.0%
5	15	20	16,382	16,090	289,903	284,571	17.7	17.7	-0.1%
6	20	25	17,342	16,840	387,865	376,652	22.4	22.4	0.0%
7	25	30	12,895	12,504	350,069	339,441	27.1	27.1	0.0%
8	30	35	16,736	16,377	550,065	538,500	32.9	32.9	0.0%
9	35	40	8,991	8,819	330,678	324,267	36.8	36.8	0.0%
10	40	45	5,814	5,712	243,675	239,341	41.9	41.9	0.0%
11	45	50	3,652	3,610	174,151	172,163	47.7	47.7	0.0%
12	50	55	2,874	2,818	150,367	147,382	52.3	52.3	0.0%
13	55	60	4,363	4,310	253,497	250,392	58.1	58.1	0.0%
14	60	65	2,280	2,182	142,319	136,139	62.4	62.4	0.0%
15	65	70	2,305	2,234	155,240	150,552	67.4	67.4	0.0%
16	70	75	1,510	1,470	109,178	106,262	72.3	72.3	0.0%
17	75	80	4,474	4,411	349,369	344,461	78.1	78.1	0.0%
18	80	85	1,455	1,420	119,412	116,524	82.1	82.1	0.0%
19	85	90	1,190	1,121	104,144	98,077	87.5	87.5	0.0%
20	90	95	1,256	1,190	116,805	110,691	93.0	93.0	0.0%
21	95	100	862	824	83,992	80,407	97.4	97.5	0.1%
22	100	150	6,315	5,887	784,432	730,765	124.2	124.1	-0.1%
23	150	999	6,129	5,181	1,405,673	1,172,965	229.3	226.4	-1.3%
Total			231,220	229,891	6,880,611	6,506,790	29.76	28.30	-4.9%
0_0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45

	Prior	PostME
Mean	29.76	28.30
SD	42.09	39.57

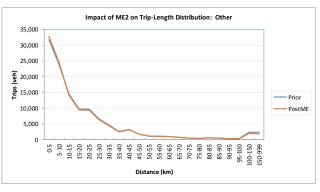
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	0	2,679	5,262	1,604	1,050	1,480	2,472	1,782	1,139	863	777	645	821	845	591	382	341	495	369	283	314	2,185	2,609
PostME Trips (veh)	0	2,787	5,344	1,601	1,045	1,434	2,375	1,700	1,092	831	756	622	800	807	554	358	305	470	328	250	271	1,864	1,997
Prior veh.km	0	10,524	37,636	20,763	18,557	33,211	67,389	57,764	42,983	36,318	37,198	33,751	47,648	52,707	39,585	27,744	26,482	40,597	32,276	26,149	30,584	271,190	606,284
PostME veh.km	0	10,797	38,239	20,727	18,446	32,189	64,759	55,084	41,241	34,949	36,209	32,521	46,434	50,361	37,103	25,949	23,672	38,581	28,677	23,044	26,386	230,431	459,634


Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	%Diff		
Dallu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII		
1	0	0	0	0	0	0	0.0	0.0	#DIV/0!		6
2	0	5	2,679	2,787	10,524	10,797	3.9	3.9	-1.4%		
3	5	10	5,262	5,344	37,636	38,239	7.2	7.2	0.1%		5
4	10	15	1,604	1,601	20,763	20,727	12.9	12.9	0.0%		
5	15	20	1,050	1,045	18,557	18,446	17.7	17.7	-0.1%		<u></u>
6	20	25	1,480	1,434	33,211	32,189	22.4	22.4	0.0%		
7	25	30	2,472	2,375	67,389	64,759	27.3	27.3	0.0%		lips
8	30	35	1,782	1,700	57,764	55,084	32.4	32.4	0.0%		Trips (veh)
9	35	40	1,139	1,092	42,983	41,241	37.7	37.8	0.1%		
10	40	45	863	831	36,318	34,949	42.1	42.1	0.0%		1
11	45	50	777	756	37,198	36,209	47.9	47.9	0.0%		
12	50	55	645	622	33,751	32,521	52.3	52.3	0.0%		
13	55	60	821	800	47,648	46,434	58.0	58.0	0.0%		
14	60	65	845	807	52,707	50,361	62.4	62.4	0.0%		
15	65	70	591	554	39,585	37,103	67.0	67.0	0.0%		
16	70	75	382	358	27,744	25,949	72.5	72.6	0.0%		
17	75	80	341	305	26,482	23,672	77.6	77.6	-0.1%		
18	80	85	495	470	40,597	38,581	82.0	82.0	0.0%		
19	85	90	369	328	32,276	28,677	87.5	87.5	0.0%	1	Mean
20	90	95	283	250	26,149	23,044	92.3	92.3	0.0%	5	SD
21	95	100	314	271	30,584	26,386	97.4	97.5	0.1%	_	
22	100	150	2,185	1,864	271,190	230,431	124.1	123.6	-0.4%	NO 30 C	f 20
23	150	999	2,609	1,997	606,284	459,634	232.4	230.1	-1.0%	ge 30 c	. 33
Total			28,989	27,591	1,597,342	1,375,432	55.10	49.85	-9.5%		

	Prior	PostME
Mean	55.10	49.85
SD	69.06	63.57

Commute																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	1	9,212	5,263	8,384	3,556	3,825	1,492	1,056	763	556	644	580	176	157	107	150	55	125	110	40	54	420	119
PostME Trips (veh)	1	9,354	5,369	8,320	3,497	3,707	1,467	1,033	754	551	641	578	172	151	105	146	52	122	104	36	49	400	90
Prior veh.km	0	28,830	39,422	108,712	63,176	85,351	41,044	34,504	28,769	23,353	30,247	30,472	10,209	9,845	7,184	10,829	4,265	10,357	9,587	3,658	5,285	52,346	27,074
PostME veh.km	0	29,244	40,184	107,878	62,074	82,723	40,383	33,766	28,445	23,139	30,138	30,338	9,979	9,406	7,027	10,596	4,027	10,138	9,061	3,280	4,807	49,854	20,224

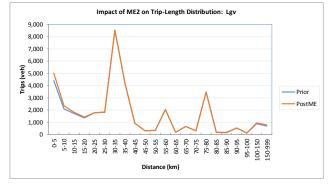
Band	Distance (km)		Trips	(veh)	Trip.	kms	Lengt	h (km)	%Diff
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII
1	0	0	1	1	0	0	0.0	0.0	#DIV/0!
2	0	5	9,212	9,354	28,830	29,244	3.1	3.1	-0.1%
3	5	10	5,263	5,369	39,422	40,184	7.5	7.5	-0.1%
4	10	15	8,384	8,320	108,712	107,878	13.0	13.0	0.0%
5	15	20	3,556	3,497	63,176	62,074	17.8	17.8	-0.1%
6	20	25	3,825	3,707	85,351	82,723	22.3	22.3	0.0%
7	25	30	1,492	1,467	41,044	40,383	27.5	27.5	0.0%
8	30	35	1,056	1,033	34,504	33,766	32.7	32.7	0.0%
9	35	40	763	754	28,769	28,445	37.7	37.7	0.0%
10	40	45	556	551	23,353	23,139	42.0	42.0	0.0%
11	45	50	644	641	30,247	30,138	47.0	47.0	0.0%
12	50	55	580	578	30,472	30,338	52.5	52.5	0.0%
13	55	60	176	172	10,209	9,979	57.9	57.9	0.0%
14	60	65	157	151	9,845	9,406	62.5	62.5	0.0%
15	65	70	107	105	7,184	7,027	67.1	67.0	-0.1%
16	70	75	150	146	10,829	10,596	72.4	72.4	0.0%
17	75	80	55	52	4,265	4,027	77.5	77.5	0.0%
18	80	85	125	122	10,357	10,138	83.2	83.2	0.0%
19	85	90	110	104	9,587	9,061	87.4	87.5	0.0%
20	90	95	40	36	3,658	3,280	92.1	92.1	0.0%
21	95	100	54	49	5,285	4,807	97.8	98.0	0.1%
22	100	150	420	400	52,346	49,854	124.5	124.5	0.0%
23	150	999	119	90	27,074	20,224	227.2	224.7	-1.1%
Fotal			36,843	36,697	664,518	646,712	18.04	17.62	-2.3%



	Prior	PostME
Mean	18.04	17.62
SD	22.71	21.59

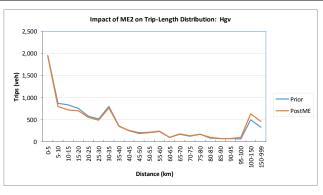
Other

Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	3	31,753	23,868	14,482	9,642	9,686	6,588	4,566	2,593	3,225	1,739	1,108	1,084	994	781	528	426	583	476	311	316	2,331	2,361
PostME Trips (veh)	3	32,777	24,517	14,169	9,406	9,343	6,333	4,337	2,478	3,152	1,697	1,062	1,043	940	726	498	385	553	433	275	275	2,044	1,846
Prior veh.km	0	100,465	179,809	182,678	169,979	215,697	179,585	148,205	97,892	135,231	83,229	57,900	62,723	62,001	52,381	38,281	33,063	47,630	41,672	28,688	30,723	289,401	545,226
PostME veh.km	0	103,304	184,530	178,723	165,668	208,052	172,685	140,820	93,619	132,155	81,253	55,482	60,356	58,631	48,680	36,113	29,865	45,185	37,880	25,394	26,799	253,029	421,747


Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	%Diff		
Band	from	to	Prior	PostME	Prior	PostME	Prior	PostME	%DIΠ		
1	0	0	3	3	0	0	0.0	0.0	#DIV/0!		3
2	0	5	31,753	32,777	100,465	103,304	3.2	3.2	-0.4%		3
3	5	10	23,868	24,517	179,809	184,530	7.5	7.5	-0.1%		
4	10	15	14,482	14,169	182,678	178,723	12.6	12.6	0.0%		2
5	15	20	9,642	9,406	169,979	165,668	17.6	17.6	-0.1%		Ê.
6	20	25	9,686	9,343	215,697	208,052	22.3	22.3	0.0%		Trips (veh)
7	25	30	6,588	6,333	179,585	172,685	27.3	27.3	0.0%		5년 1
8	30	35	4,566	4,337	148,205	140,820	32.5	32.5	0.0%		
9	35	40	2,593	2,478	97,892	93,619	37.8	37.8	0.1%		1
10	40	45	3,225	3,152	135,231	132,155	41.9	41.9	0.0%		
11	45	50	1,739	1,697	83,229	81,253	47.9	47.9	0.0%		
12	50	55	1,108	1,062	57,900	55,482	52.2	52.2	0.0%		
13	55	60	1,084	1,043	62,723	60,356	57.8	57.9	0.0%		
14	60	65	994	940	62,001	58,631	62.4	62.4	0.0%		
15	65	70	781	726	52,381	48,680	67.0	67.0	0.0%		
16	70	75	528	498	38,281	36,113	72.5	72.5	0.0%		
17	75	80	426	385	33,063	29,865	77.6	77.5	0.0%		
18	80	85	583	553	47,630	45,185	81.8	81.7	0.0%		
19	85	90	476	433	41,672	37,880	87.6	87.6	0.0%	[Mean
20	90	95	311	275	28,688	25,394	92.2	92.2	0.0%		SD
21	95	100	316	275	30,723	26,799	97.4	97.4	0.0%	-	
22	100	150	2,331	2,044	289,401	253,029	124.2	123.8	-0.3%	ge 31 d	of 30
23	150	999	2,361	1,846	545,226	421,747	230.9	228.4	-1.1%	90 31 0	. 33
Total			119,442	118,293	2,782,458	2,559,969	23.30	21.64	-7.1%		

	Prior	PostME
Mean	23.30	21.64
SD	38.61	35.24

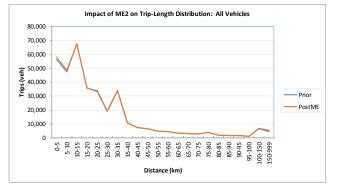
Lgv																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	3	4,404	2,111	1,721	1,382	1,773	1,825	8,534	4,140	920	305	337	2,052	183	656	323	3,483	177	167	550	115	880	712
PostME Trips (veh)) 3	5,006	2,376	1,814	1,438	1,803	1,840	8,547	4,154	925	314	345	2,058	185	673	332	3,496	182	184	555	130	949	785
Prior veh.km	0	12,204	15,037	21,702	24,878	40,576	48,013	283,337	147,814	38,147	14,545	17,608	119,629	11,449	44,640	23,189	272,432	14,567	14,595	51,663	11,176	109,558	156,661
PostME veh.km	0	13,860	16,867	22,866	25,873	41,233	48,436	283,792	148,328	38,361	14,946	18,053	119,961	11,553	45,787	23,841	273,443	14,972	16,088	52,076	12,716	118,442	172,517


Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	-0.39 -0.19 -0.19 -0.19 0.09 0.09 0.09 0.09 0.09 0.09
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII
1	0	0	3	3	0	0	0.0	0.0	#DIV/0!
2	0	5	4,404	5,006	12,204	13,860	2.8	2.8	-0.1%
3	5	10	2,111	2,376	15,037	16,867	7.1	7.1	-0.3%
4	10	15	1,721	1,814	21,702	22,866	12.6	12.6	-0.1%
5	15	20	1,382	1,438	24,878	25,873	18.0	18.0	-0.1%
6	20	25	1,773	1,803	40,576	41,233	22.9	22.9	-0.1%
7	25	30	1,825	1,840	48,013	48,436	26.3	26.3	0.0%
8	30	35	8,534	8,547	283,337	283,792	33.2	33.2	0.0%
9	35	40	4,140	4,154	147,814	148,328	35.7	35.7	0.0%
10	40	45	920	925	38,147	38,361	41.4	41.5	0.0%
11	45	50	305	314	14,545	14,946	47.6	47.6	0.0%
12	50	55	337	345	17,608	18,053	52.3	52.3	0.0%
13	55	60	2,052	2,058	119,629	119,961	58.3	58.3	0.0%
14	60	65	183	185	11,449	11,553	62.5	62.5	-0.1%
15	65	70	656	673	44,640	45,787	68.0	68.0	0.0%
16	70	75	323	332	23,189	23,841	71.8	71.7	0.0%
17	75	80	3,483	3,496	272,432	273,443	78.2	78.2	0.0%
18	80	85	177	182	14,567	14,972	82.2	82.2	0.0%
19	85	90	167	184	14,595	16,088	87.5	87.4	0.0%
20	90	95	550	555	51,663	52,076	93.9	93.8	0.0%
21	95	100	115	130	11,176	12,716	97.5	97.5	0.0%
22	100	150	880	949	109,558	118,442	124.4	124.9	0.3%
23	150	999	712	785	156,661	172,517	220.1	219.8	-0.1%
otal			36,751	38,092	1,493,420	1,534,013	40.64	40.27	-0.9%

	Prior	PostME
Mean	40.63	40.27
SD	38.06	38.95

Hgv																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	0	1,952	870	830	752	577	519	798	357	250	187	204	229	101	169	127	168	76	69	72	64	498	328
PostME Trips (veh)	0	1,938	798	722	704	552	488	760	342	253	201	211	236	99	176	135	173	93	73	74	99	630	462
Prior veh.km	0	5,150	6,353	10,493	13,314	13,029	14,038	26,255	13,220	10,625	8,931	10,636	13,289	6,316	11,449	9,135	13,127	6,261	6,015	6,647	6,224	61,936	70,429
PostME veh.km	0	5,101	5,752	9,167	12,509	12,454	13,179	25,039	12,633	10,737	9,618	10,988	13,661	6,187	11,954	9,763	13,454	7,648	6,370	6,897	9,700	79,009	98,843

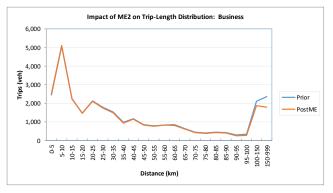
David	Distan	ce (km)	Trips	(veh)	Trip.	kms	Lengt	n (km)	0/ D://		
Band	from	to	Prior	PostME	Prior	PostME	Prior	PostME	%Diff		
1	0	0	0	0	0	0	0.0	0.0	#DIV/0!		1
2	0	5	1,952	1,938	5,150	5,101	2.6	2.6	-0.2%		
3	5	10	870	798	6,353	5,752	7.3	7.2	-1.2%		2
4	10	15	830	722	10,493	9,167	12.6	12.7	0.5%		
5	15	20	752	704	13,314	12,509	17.7	17.8	0.4%		E :
6	20	25	577	552	13,029	12,454	22.6	22.6	-0.1%		Trips (veh)
7	25	30	519	488	14,038	13,179	27.1	27.0	-0.2%		uips .
8	30	35	798	760	26,255	25,039	32.9	33.0	0.2%		- F -
9	35	40	357	342	13,220	12,633	37.0	37.0	0.0%		
10	40	45	250	253	10,625	10,737	42.5	42.5	0.0%		
11	45	50	187	201	8,931	9,618	47.8	47.8	-0.1%		
12	50	55	204	211	10,636	10,988	Prior PostME 0 0.0 #DIV0 01 2.6 2.6 7.3 7.2 -1.2% 67 12.6 12.7 09 17.7 17.8 0.4% 154 22.6 22.6 -0.1% 179 27.1 27.0 -0.2% 333 37.0 37.0 0.0% 333 37.0 37.0 0.0% 18 47.8 -0.1% 18 58.0 -0.1% 18 58.0 -0.1% 18 77.2 -0.1% 18 47.8 0.0% 18 52.2 52.1 -0.1% 18 76.2 70.1% 18 78.0 0.0% 18 78.0 0.0% 18 78.0 0.0% 18 78.0 0.0% 18 78.0 0.0% 18 78.3 0.0%				
13	55	60	229	236	13,289	13,661	58.0	58.0	-0.1%		
14	60	65	101	99	6,316	6,187	62.7	62.7	0.1%		
15	65	70	169	176	11,449	11,954	67.6	67.8	0.2%		
16	70	75	127	135	9,135	9,763	72.2	72.1	-0.1%		
17	75	80	168	173	13,127	13,454	78.0	78.0	0.0%		
18	80	85	76	93	6,261	7,648	82.3	82.3	0.0%		
19	85	90	69	73	6,015	6,370	87.4	87.4	0.0%		Mean
20	90	95	72	74	6,647	6,897	92.9	92.7	-0.2%		SD
21	95	100	64	99	6,224	9,700	97.4	97.8	0.4%		
22	100	150	498	630	61,936	79,009	124.5	125.4	0.7%	ne 32 (of 39
23	150	999	328	462	70,429	98,843	214.8	213.9	-0.4%		
Total			9,196	9,218	342,873	390,664	37.28	42.38	13.7%		



	Prior	PostME
Mean	37.28	42.38
SD	47.97	53.72

Trip Length Distribution Comparison – PM Peak

All Vehicles																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	6	56,370	47,462	67,616	35,798	33,686	19,361	34,161	10,832	7,492	6,493	4,816	4,673	3,404	3,133	2,852	4,069	1,972	1,656	1,768	986	6,805	5,468
PostME Trips (veh)	6	58,064	48,573	67,375	35,752	33,307	19,070	33,798	10,702	7,442	6,497	4,764	4,639	3,325	3,106	2,839	4,030	1,959	1,630	1,714	981	6,661	4,662
Prior veh.km	0	178,337	354,230	859,080	650,706	762,576	527,124	1,140,850	401,590	315,201	308,181	253,626	270,934	212,358	211,191	205,191	317,402	162,204	144,839	165,291	96,099	839,655	1,256,585
PostME veh.km	0	183,340	362,498	856,049	649,683	754,041	519,246	1,128,999	396,801	313,155	308,334	250,820	268,941	207,373	209,444	204,276	314,360	161,174	142,505	160,291	95,793	821,964	1,047,269


Band	Distan	ce (km)	Trips	(veh)	Trip.	kms	Length	n (km)	%Diff
Danu	from	to	Prior	PostME	Prior	PostME	Prior	PostME	76 DIII
1	0	0	6	6	0	0	0.0	0.0	#DIV/0!
2	0	5	56,370	58,064	178,337	183,340	3.2	3.2	-0.2%
3	5	10	47,462	48,573	354,230	362,498	7.5	7.5	0.0%
4	10	15	67,616	67,375	859,080	856,049	12.7	12.7	0.0%
5	15	20	35,798	35,752	650,706	649,683	18.2	18.2	0.0%
6	20	25	33,686	33,307	762,576	754,041	22.6	22.6	0.0%
7	25	30	19,361	19,070	527,124	519,246	27.2	27.2	0.0%
8	30	35	34,161	33,798	1,140,850	1,128,999	33.4	33.4	0.0%
9	35	40	10,832	10,702	401,590	396,801	37.1	37.1	0.0%
10	40	45	7,492	7,442	315,201	313,155	42.1	42.1	0.0%
11	45	50	6,493	6,497	308,181	308,334	47.5	47.5	0.0%
12	50	55	4,816	4,764	253,626	250,820	52.7	52.6	0.0%
13	55	60	4,673	4,639	270,934	268,941	58.0	58.0	0.0%
14	60	65	3,404	3,325	212,358	207,373	62.4	62.4	0.0%
15	65	70	3,133	3,106	211,191	209,444	67.4	67.4	0.0%
16	70	75	2,852	2,839	205,191	204,276	71.9	71.9	0.0%
17	75	80	4,069	4,030	317,402	314,360	78.0	78.0	0.0%
18	80	85	1,972	1,959	162,204	161,174	82.2	82.3	0.0%
19	85	90	1,656	1,630	144,839	142,505	87.5	87.4	0.0%
20	90	95	1,768	1,714	165,291	160,291	93.5	93.5	0.1%
21	95	100	986	981	96,099	95,793	97.4	97.6	0.2%
22	100	150	6,805	6,661	839,655	821,964	123.4	123.4	0.0%
23	150	999	5,468	4,662	1,256,585	1,047,269	229.8	224.7	-2.2%
otal			360,873	360,890	9,633,247	9,356,357	26.69	25.93	-2.9%

	Prior	PostME
Mean	26.69	25.93
SD	34.11	32.15

Business																							
Distance	0-0	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100-150	150-999
Prior Trips (veh)	0	2,459	5,072	2,254	1,469	2,130	1,783	1,543	970	1,174	845	793	831	841	631	436	409	436	431	288	334	2,109	2,366
PostME Trips (veh)	0	2,521	5,116	2,246	1,479	2,107	1,754	1,495	946	1,154	834	773	826	818	607	423	379	427	401	256	283	1,878	1,780
Prior veh.km	0	9,783	36,217	29,368	25,935	47,647	48,710	50,097	36,555	49,450	40,183	41,795	48,191	52,626	42,246	31,678	31,723	35,772	37,731	26,600	32,533	262,055	549,508
PostME veh.km	0	9,969	36,553	29,262	26,093	47,127	47,921	48,549	35,667	48,592	39,669	40,726	47,851	51,138	40,697	30,737	29,415	34,973	35,123	23,665	27,551	233,145	407,449

	9/ D:ff	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trip.	(veh)	Trips	ce (km)	Distan	Band		
	%Dm		to	from	Бапо					
6,	#DIV/0!	0.0	0.0	0	0	0	0	0	0	1
	-0.6%	4.0	4.0	9,969	9,783	2,521	2,459	5	0	2
5,	0.1%	7.1	7.1	36,553	36,217	5,116	5,072	10	5	3
4,	0.0%	13.0	13.0	29,262	29,368	2,246	2,254	15	10	4
<u> </u>	-0.1%	17.6	17.7	26,093	25,935	1,479	1,469	20	15	5
, ¹² (veh)	0.0%	22.4	22.4	47,127	47,647	2,107	2,130	25	20	6
l si si	0.0%	27.3	27.3	47,921	48,710	1,754	1,783	30	25	7
F 2,	0.0%	32.5	32.5	48,549	50,097	1,495	1,543	35	30	8
	0.0%	37.7	37.7	35,667	36,555	946	970	40	35	9
1,	0.0%	42.1	42.1	48,592	49,450	1,154	1,174	45	40	10
	0.0%	47.6	47.6	39,669	40,183	834	845	50	45	11
	0.0%	52.7	52.7	40,726	41,795	773	793	55	50	12
	0.0%	58.0	58.0	47,851	48,191	826	831	60	55	13
	0.0%	62.5	62.5	51,138	52,626	818	841	65	60	14
	0.1%	67.0	67.0	40,697	42,246	607	631	70	65	15
	0.0%	72.6	72.6	30,737	31,678	423	436	75	70	16
	0.0%	77.5	77.6	29,415	31,723	379	409	80	75	17
	0.0%	82.0	82.0	34,973	35,772	427	436	85	80	18
Mean	0.0%	87.6	87.6	35,123	37,731	401	431	90	85	19
SD	0.0%	92.3	92.3	23,665	26,600	256	288	95	90	20
	0.1%	97.5	97.4	27,551	32,533	283	334	100	95	21
age 34 of 39	-0.1%	124.1	124.2	233,145	262,055	1,878	2,109	150	100	22
	-1.4%	228.9	232.3	407,449	549,508	1,780	2,366	999	150	23
	-9.0%	48.13	52.91	1,371,872	1,566,406	28,506	29,606			otal

